Skip to main content

Therapy-related AML

  • Chapter
Book cover Acute Myelogenous Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1201 Accesses

Abstract

Patients who have been treated successfully with chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities are at risk for long-term complications of their treatment. One of the most serious complications is the development of therapy-related myelodysplasia (t-MDS) and therapy-related acute myeloid leukemia (t-AML), which most likely result as a direct consequence of prior cytotoxic therapy. t-MDS/t-AML represent distinct clinical entities as compared to their de novo counterparts and confer a poor prognosis. A clearer understanding of the factors that predispose patients to the development of t-MDS and t-AML will help clinicians monitor patients more carefully after treatment for a primary malignancy, during long-term immunosuppression for autoimmune disease, or following solid organ transplants. Ultimately, this knowledge may influence the treatment strategies for those patients with solid tumors and those on long-term immunosuppression, groups that are at increased risk for the development of t-MDS/t-AML. This chapter will review the clinical features and treatment of these disorders, epidemiology, cytogenetic features, and the genetic pathways involved in the pathogenesis of t-MDS/t-AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.

    Article  CAS  PubMed  Google Scholar 

  2. Le Beau MM, Espinosa R, 3rd, Davis EM, Eisenbart JD, Larson RA, Green ED. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 1996;88: 1930–1935.

    PubMed  Google Scholar 

  3. Zhao N, Stoffel A, Wang PW, et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA 1997;94:6948–6953.

    Article  CAS  PubMed  Google Scholar 

  4. Curtis RE, Boice JD, Jr., Stovall M, et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med 1992;326:1745–1751.

    CAS  PubMed  Google Scholar 

  5. Greene MH, Harris EL, Gershenson DM, et al. Melphalan may be a more potent leukemogen than cyclophosphamide. Ann Intern Med 1986;105:360–367.

    CAS  PubMed  Google Scholar 

  6. Reimer RR, Hoover R, Fraumeni JF, Jr., Young RC. Acute leukemia after alkylating-agent therapy of ovarian cancer. N Engl J Med 1977;297:177–181.

    Article  CAS  PubMed  Google Scholar 

  7. Coltman CA, Jr., Dixon DO. Second malignancies complicating Hodgkin’s disease: a Southwest Oncology Group 10-year followup. Cancer Treat Rep 1982;66:1023–1033.

    PubMed  Google Scholar 

  8. Greene MH, Boice JD, Jr., Greer BE, Blessing JA, Dembo AJ. Acute nonlymphocytic leukemia after therapy with alkylating agents for ovarian cancer: a study of five randomized clinical trials. N Engl J Med 1982;307: 1416–1421.

    CAS  PubMed  Google Scholar 

  9. Greene MH, Young RC, Merrill JM, De Vita VT. Evidence of a treatment dose response in acute nonlymphocytic leukemias which occur after therapy of non-Hodgkin’s lymphoma. Cancer Res 1983;43:1891–1898.

    CAS  PubMed  Google Scholar 

  10. Greene MH, Boice JD, Jr., Strike TA. Carmustine as a cause of acute nonlymphocytic leukemia. N Engl J Med 1985;313:579.

    Article  CAS  PubMed  Google Scholar 

  11. Pedersen-Bjergaard J, Ersboll J, Sorensen HM, et al. Risk of acute nonlymphocytic leukemia and preleukemia in patients treated with cyclophosphamide for non-Hodgkin’s lymphomas. Comparison with results obtained in patients treated for Hodgkin’s disease and ovarian carcinoma with other alkylating agents. Ann Intern Med 1985;103:195–200.

    CAS  PubMed  Google Scholar 

  12. Pedersen-Bjergaard J, Specht L, Larsen SO, et al. Risk of therapy-related leukaemia and preleukaemia after Hodgkin’s disease. Relation to age, cumulative dose of alkylating agents, and time from chemotherapy. Lancet 1987;2:83–88.

    Article  CAS  PubMed  Google Scholar 

  13. van der Velden JW, van Putten WL, Guinee VF, et al. Subsequent development of acute non-lymphocytic leukemia in patients treated for Hodgkin’s disease. Int J Cancer 1988;42:252–255.

    Article  PubMed  Google Scholar 

  14. Fairman J, Chumakov I, Chinault AC, Nowell PC, Nagarajan L. Physical mapping of the minimal region of loss in 5q-chromosome. Proc Natl Acad Sci USA 1995;92:7406–7410.

    Article  CAS  PubMed  Google Scholar 

  15. Jaju RJ, Boultwood J, Oliver FJ, et al. Molecular cytogenetic delineation of the critical deleted region in the 5q-syndrome. Genes Chromosomes Cancer 1998;22:251–256.

    Article  CAS  PubMed  Google Scholar 

  16. Horrigan SK, Arbieva ZH, Xie HY, et al. Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 2000;95:2372–2377.

    CAS  PubMed  Google Scholar 

  17. Lai F, Godley LA, Joslin J, et al. Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 2001;71:235–245.

    Article  CAS  PubMed  Google Scholar 

  18. Boultwood J, Lewis S, Wainscoat JS. The 5q-syndrome. Blood 1994;84:3253–3260.

    CAS  PubMed  Google Scholar 

  19. Van den Berghe H, Michaux L. 5q-, twenty-five years later: a synopsis. Cancer Genet Cytogenet 1997; 94:1–7.

    Article  PubMed  Google Scholar 

  20. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079–2088.

    CAS  PubMed  Google Scholar 

  21. Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q-syndrome. Blood 2002;99:4638–4641.

    Article  CAS  PubMed  Google Scholar 

  22. Kere J. Chromosome 7 long arm deletion breakpoints in preleukemia: mapping by pulsed field gel electrophoresis. Nucleic Acids Res 1989;17:1511–1520.

    Article  CAS  PubMed  Google Scholar 

  23. Lewis S, Abrahamson G, Boultwood J, Fidler C, Potter A, Wainscoat JS. Molecular characterization of the 7q deletion in myeloid disorders. Br J Haematol 1996;93:75–80.

    Article  CAS  PubMed  Google Scholar 

  24. Fischer K, Frohling S, Scherer SW, et al. Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias. Blood 1997;89:2036–2041.

    CAS  PubMed  Google Scholar 

  25. Dohner K, Brown J, Hehmann U, et al. Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders. Blood 1998;92:4031–4035.

    CAS  PubMed  Google Scholar 

  26. Tosi S, Scherer SW, Giudici G, Czepulkowski B, Biondi A, Kearney L. Delineation of multiple deleted regions in 7q in myeloid disorders. Genes Chromosomes Cancer 1999;25:384–392.

    Article  CAS  PubMed  Google Scholar 

  27. Kratz CP, Emerling BM, Donovan S, et al. Candidate gene isolation and comparative analysis of a commonly deleted segment of 7q22 implicated in myeloid malignancies. Genomics 2001;77:171–180.

    Article  CAS  PubMed  Google Scholar 

  28. Pui CH, Raimondi SC, Behm FG, et al. Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood 1986;68:1306–1310.

    CAS  PubMed  Google Scholar 

  29. Ratain MJ, Kaminer LS, Bitran JD, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 1987;70:1412–1417.

    CAS  PubMed  Google Scholar 

  30. Larson RA, Le Beau MM, Ratain MJ, Rowley JD. Balanced translocations involving chromosome bands 11q23 and 21q22 in therapy-related leukemia. Blood 1992;79:1892–1893.

    CAS  PubMed  Google Scholar 

  31. Pedersen-Bjergaard J, Johansson B, Philip P. Translocation (3;21)(q26;q22) in therapy-related myelodysplasia following drugs targeting DNA-topoisomerase II combined with alkylating agents, and in myeloproliferative disorders undergoing spontaneous leukemic transformation. Cancer Genet Cytogenet 1994;76:50–55.

    Article  CAS  PubMed  Google Scholar 

  32. Rowley JD. Molecular genetics in acute leukemia. Leukemia 2000;14:513–517.

    Article  CAS  PubMed  Google Scholar 

  33. Bloomfield CD, Archer KJ, Mrozek K, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:362–378.

    Article  PubMed  Google Scholar 

  34. Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002;33:331–345.

    Article  PubMed  Google Scholar 

  35. Rowley JD, Reshmi S, Sobulo O, et al. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 1997;90:535–541.

    CAS  PubMed  Google Scholar 

  36. Slovak ML, Bedell V, Popplewell L, Arber DA, Schoch C, Slater R. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosomes Cancer 2002;33:379–394.

    Article  PubMed  Google Scholar 

  37. Andersen MK, Larson RA, Mauritzson N, Schnittger S, Jhanwar SC, Pedersen-Bjergaard J. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:395–400.

    Article  PubMed  Google Scholar 

  38. Block AW, Carroll AJ, Hagemeijer A, et al. Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:401–412.

    Article  PubMed  Google Scholar 

  39. Secker-Walker LM, Stewart EL, Todd A. Acute lymphoblastic leukaemia with t(4;11) follows neuroblastoma: a late effect of treatment? Med Pediatr Oncol 1985;13:48–50.

    Article  CAS  PubMed  Google Scholar 

  40. Archimbaud E, Charrin C, Guyotat D, Magaud JP, Gentilhomme O, Fiere D. Acute leukaemia with t(4;11) in patients previously exposed to carcinogens. Br J Haematol 1988;69:467–470.

    Article  CAS  PubMed  Google Scholar 

  41. Jonveaux P, Hillion J, Bernard O, et al. Distinct MLL gene rearrangements associated with successive acute monocytic and lymphoblastic leukemias in the same patient. Leukemia 1994;8:2224–2227.

    CAS  PubMed  Google Scholar 

  42. Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003;102:43–52.

    Article  CAS  PubMed  Google Scholar 

  43. Alcalay M, Orleth A, Sebastiani C, et al. Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 2001;20:5680–5694.

    Article  CAS  PubMed  Google Scholar 

  44. Kelly L, Clark J, Gilliland DG. Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications. Curr Opin Oncol 2002;14:10–18.

    Article  CAS  PubMed  Google Scholar 

  45. Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood 2002;99:1909–1912.

    Article  CAS  PubMed  Google Scholar 

  46. Christiansen DH, Pedersen-Bjergaard J. Internal tandem duplications of the FLT3 and MLL genes are mainly observed in atypical cases of therapy-related acute myeloid leukemia with a normal karyotype and are unrelated to type of previous therapy. Leukemia 2001;15:1848–1851.

    CAS  PubMed  Google Scholar 

  47. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003;17:1813–1819.

    Article  CAS  PubMed  Google Scholar 

  48. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 2004;104:1474–1481.

    Article  CAS  PubMed  Google Scholar 

  49. Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004;103:2325–2331.

    Article  CAS  PubMed  Google Scholar 

  50. Side LE, Curtiss NP, Teel K, et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 2004;39:217–223.

    Article  CAS  PubMed  Google Scholar 

  51. Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Amplification or duplication of chromosome band 21q22 with multiple copies of the AML1 gene and mutation of the TP53 gene in therapy-related MDS and AML. Leukemia 2005;19:197–200.

    Article  CAS  PubMed  Google Scholar 

  52. Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Centromeric breakage and highly rearranged chromosome derivatives associated with mutations of TP53 are common in therapy-related MDS and AML after therapy with alkylating agents: an M-FISH study. Genes Chromosomes Cancer 2005;42:358–371.

    Article  CAS  PubMed  Google Scholar 

  53. Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM. Expression profiling of CD34+ hematopoietic stem/ progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002;99:14,925–14,930.

    Article  CAS  PubMed  Google Scholar 

  54. Pedersen-Bjergaard J. Insights into leukemogenesis from therapy-related leukemia. N Engl J Med 2005; 352:1591–1594.

    Article  CAS  PubMed  Google Scholar 

  55. Felix CA, Lange BJ, Hosler MR, Fertala J, Bjornsti MA. Chromosome band 11q23 translocation breakpoints are DNA topoisomerase II cleavage sites. Cancer Res 1995;55:4287–4292.

    CAS  PubMed  Google Scholar 

  56. Stanulla M, Wang J, Chervinsky DS, Thandla S, Aplan PD. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 1997;17:4070–4079.

    CAS  PubMed  Google Scholar 

  57. Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ. An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 1998;92:3793–3803.

    CAS  PubMed  Google Scholar 

  58. Zhang Y, Strissel P, Strick R, et al. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc Natl Acad Sci USA 2002;99:3070–3075.

    Article  CAS  PubMed  Google Scholar 

  59. Ahuja HG, Felix CA, Aplan PD. Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer 2000;29:96–105.

    Article  CAS  PubMed  Google Scholar 

  60. Mistry AR, Felix CA, Whitmarsh RJ, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005;352:1529–1538.

    Article  CAS  PubMed  Google Scholar 

  61. Libura J, Slater DJ, Felix CA, Richardson C. Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34+ cells and remain stable after clonal expansion. Blood 2005;105:2124–2131.

    Article  CAS  PubMed  Google Scholar 

  62. Offman J, Opelz G, Doehler B, et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood 2004;104:822–828.

    Article  CAS  PubMed  Google Scholar 

  63. Larson RA, Wang Y, Banerjee M, et al. Prevalence of the inactivating 609C→T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999;94:803–807.

    CAS  PubMed  Google Scholar 

  64. Naoe T, Takeyama K, Yokozawa T, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/ myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000;6:4091–4095.

    CAS  PubMed  Google Scholar 

  65. Wiemels JL, Pagnamenta A, Taylor GM, Eden OB, Alexander FE, Greaves MF. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 1999;59:4095–4099.

    CAS  PubMed  Google Scholar 

  66. Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998;95:13,176–13,181.

    Article  CAS  PubMed  Google Scholar 

  67. Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998;90:1225–1229.

    Article  CAS  PubMed  Google Scholar 

  68. Glicksman AS, Pajak TF, Gottlieb A, Nissen N, Stutzman L, Cooper MR. Second malignant neoplasms in patients successfully treated for Hodgkin’s disease: a Cancer and Leukemia Group B study. Cancer Treat Rep 1982;66:1035–1044.

    CAS  PubMed  Google Scholar 

  69. Pedersen-Bjergaard J, Larsen SO. Incidence of acute nonlymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome up to 10 years after treatment of Hodgkin’s disease. N Engl J Med 1982; 307:965–971.

    Article  CAS  PubMed  Google Scholar 

  70. Boivin JF, Hutchison GB, Lyden M, Godbold J, Chorosh J, Schottenfeld D. Second primary cancers following treatment of Hodgkin’s disease. J Natl Cancer Inst 1984;72:233–241.

    CAS  PubMed  Google Scholar 

  71. Meadows AT, Baum E, Fossati-Bellani F, et al. Second malignant neoplasms in children: an update from the Late Effects Study Group. J Clin Oncol 1985;3:532–538.

    CAS  PubMed  Google Scholar 

  72. Valagussa P, Santoro A, Fossati-Bellani F, Banfi A, Bonadonna G. Second acute leukemia and other malignancies following treatment for Hodgkin’s disease. J Clin Oncol 1986;4:830–837.

    CAS  PubMed  Google Scholar 

  73. Blayney DW, Longo DL, Young RC, et al. Decreasing risk of leukemia with prolonged follow-up after chemotherapy and radiotherapy for Hodgkin’s disease. N Engl J Med 1987;316:710–714.

    Article  CAS  PubMed  Google Scholar 

  74. Brusamolino E, Papa G, Valagussa P, et al. Treatment-related leukemia in Hodgkin’s disease: a multi-institution study on 75 cases. Hematol Oncol 1987;5:83–98.

    Article  CAS  PubMed  Google Scholar 

  75. Tucker MA, Coleman CN, Cox RS, Varghese A, Rosenberg SA. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med 1988;318:76–81.

    Article  CAS  PubMed  Google Scholar 

  76. Meadows AT, Obringer AC, Marrero O, et al. Second malignant neoplasms following childhood Hodgkin’s disease: treatment and splenectomy as risk factors. Med Pediatr Oncol 1989;17:477–484.

    Article  CAS  PubMed  Google Scholar 

  77. Andrieu JM, Ifrah N, Payen C, Fermanian J, Coscas Y, Flandrin G. Increased risk of secondary acute nonlymphocytic leukemia after extended-field radiation therapy combined with MOPP chemotherapy for Hodgkin’s disease. J Clin Oncol 1990;8:1148–1154.

    CAS  PubMed  Google Scholar 

  78. Devereux S, Selassie TG, Vaughan Hudson G, Vaughan Hudson B, Linch DC. Leukaemia complicating treatment for Hodgkin’s disease: the experience of the British National Lymphoma Investigation. Bmj 1990; 301:1077–1080.

    Article  CAS  PubMed  Google Scholar 

  79. Henry-Amar M, Aeppli DM, Anderson J, et al. Chapter Workshop statistical report. Part IX: Study of second cancer risk. In: Somers, R., Henry-Amar, M., Meerwaldt, J.H., Carde, P., ed. Treatment strategy in Hodgkin’s disease. Colloque Inserm., ed. Somers, R., Henry-Amar, M., Meerwaldt, J.H., Carde, P. Treatment strategy in Hodgkin’s disease. Colloque Inserm. 1990;355.

    Google Scholar 

  80. Kaldor JM, Day NE, Clarke EA, et al. Leukemia following Hodgkin’s disease. N Engl J Med 1990; 322:7–13.

    Article  CAS  PubMed  Google Scholar 

  81. Henry-Amar M, Dietrich PY. Acute leukemia after the treatment of Hodgkin’s disease. Hematol Oncol Clin North Am 1993;7:369–387.

    CAS  PubMed  Google Scholar 

  82. Kaldor JM, Day NE, Band P, et al. Second malignancies following testicular cancer, ovarian cancer and Hodgkin’s disease: an international collaborative study among cancer registries. Int J Cancer 1987;39: 571–585.

    Article  CAS  PubMed  Google Scholar 

  83. Armitage JO, Carbone PP, Connors JM, Levine A, Bennett JM, Kroll S. Treatment-related myelodysplasia and acute leukemia in non-Hodgkin’s lymphoma patients. J Clin Oncol 2003;21:897–906.

    Article  PubMed  Google Scholar 

  84. Fisher B, Rockette H, Fisher ER, Wickerham DL, Redmond C, Brown A. Leukemia in breast cancer patients following adjuvant chemotherapy or postoperative radiation: the NSABP experience. J Clin Oncol 1985;3:1640–1658.

    CAS  PubMed  Google Scholar 

  85. Abrams J, Smith M. Acute myeloid leukemia following doxorubicin and cyclophosphamide: increased risk for dose-intensive regimens? Physicians Data Query 1994.

    Google Scholar 

  86. Tallman MS, Gray R, Bennett JM, et al. Leukemogenic potential of adjuvant chemotherapy for early-stage breast cancer: the Eastern Cooperative Oncology Group experience. J Clin Oncol 1995;13:1557–1563.

    CAS  PubMed  Google Scholar 

  87. Curtis RE, Boice JD, Jr., Moloney WC, Ries LG, Flannery JT. Leukemia following chemotherapy for breast cancer. Cancer Res 1990;50:2741–2746.

    CAS  PubMed  Google Scholar 

  88. Carli PM, Sgro C, Parchin-Geneste N, et al. Increase therapy-related leukemia secondary to breast cancer. Leukemia 2000;14:1014–1017.

    Article  CAS  PubMed  Google Scholar 

  89. Chaplain G, Milan C, Sgro C, Carli PM, Bonithon-Kopp C. Increased risk of acute leukemia after adjuvant chemotherapy for breast cancer: a population-based study. J Clin Oncol 2000;18:2836–2842.

    CAS  PubMed  Google Scholar 

  90. Linassier C, Barin C, Calais G, et al. Early secondary acute myelogenous leukemia in breast cancer patients after treatment with mitoxantrone, cyclophosphamide, fluorouracil and radiation therapy. Ann Oncol 2000; 11:1289–1294.

    Article  CAS  PubMed  Google Scholar 

  91. Yagita M, Ieki Y, Onishi R, et al. Therapy-related leukemia and myelodysplasia following oral administration of etoposide for recurrent breast cancer. Int J Oncol 1998;13:91–96.

    CAS  PubMed  Google Scholar 

  92. Pedersen-Bjergaard J, Daugaard G, Hansen SW, Philip P, Larsen SO, Rorth M. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet 1991;338:359–363.

    Article  CAS  PubMed  Google Scholar 

  93. Schneider DT, Hilgenfeld E, Schwabe D, et al. Acute myelogenous leukemia after treatment for malignant germ cell tumors in children. J Clin Oncol 1999;17:3226–3233.

    CAS  PubMed  Google Scholar 

  94. Kollmannsberger C, Kuzcyk M, Mayer F, Hartmann JT, Kanz L, Bokemeyer C. Late toxicity following curative treatment of testicular cancer. Semin Surg Oncol 1999;17:275–281.

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez-Galindo C, Poquette CA, Marina NM, et al. Hematologic abnormalities and acute myeloid leukemia in children and adolescents administered intensified chemotherapy for the Ewing sarcoma family of tumors. J Pediatr Hematol Oncol 2000;22:321–329.

    Article  CAS  PubMed  Google Scholar 

  96. Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood 2000;95:3273–3279.

    CAS  PubMed  Google Scholar 

  97. Andre M, Henry-Amar M, Blaise D, et al. Treatment-related deaths and second cancer risk after autologous stem-cell transplantation for Hodgkin’s disease. Blood 1998;92:1933–1940.

    CAS  PubMed  Google Scholar 

  98. Darrington DL, Vose JM, Anderson JR, et al. Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high-dose chemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies. J Clin Oncol 1994;12:2527–2534.

    CAS  PubMed  Google Scholar 

  99. Bhatia S, Ramsay NK, Steinbuch M, et al. Malignant neoplasms following bone marrow transplantation. Blood 1996;87:3633–3639.

    CAS  PubMed  Google Scholar 

  100. Harrison CN, Gregory W, Hudson GV, et al. High-dose BEAM chemotherapy with autologous haemopoietic stem cell transplantation for Hodgkin’s disease is unlikely to be associated with a major increased risk of secondary MDS/AML. Br J Cancer 1999;81:476–483.

    Article  CAS  PubMed  Google Scholar 

  101. Stone RM, Neuberg D, Soiffer R, et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol 1994;12:2535–2542.

    CAS  PubMed  Google Scholar 

  102. Govindarajan R, Jagannath S, Flick JT, et al. Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br J Haematol 1996;95:349–353.

    Article  CAS  PubMed  Google Scholar 

  103. Milligan DW, Ruiz De Elvira MC, Kolb HJ, et al. Secondary leukaemia and myelodysplasia after autografting for lymphoma: results from the EBMT. EBMT Lymphoma and Late Effects Working Parties. European Group for Blood and Marrow Transplantation. Br J Haematol 1999;106:1020–1026.

    Article  CAS  PubMed  Google Scholar 

  104. Pedersen-Bjergaard J, Pedersen M, Myhre J, Geisler C. High risk of therapy-related leukemia after BEAM chemotherapy and autologous stem cell transplantation for previously treated lymphomas is mainly related to primary chemotherapy and not to the BEAM-transplantation procedure. Leukemia 1997;11:1654–1660.

    Article  CAS  PubMed  Google Scholar 

  105. Miller JS, Arthur DC, Litz CE, Neglia JP, Miller WJ, Weisdorf DJ. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood 1994;83:3780–3786.

    CAS  PubMed  Google Scholar 

  106. Micallef IN, Lillington DM, Apostolidis J, et al. Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol 2000;18:947–955.

    CAS  PubMed  Google Scholar 

  107. Lenz G, Dreyling M, Schiegnitz E, et al. Moderate increase of secondary hematologic malignancies after myeloablative radiochemotherapy and autologous stem-cell transplantation in patients with indolent lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group. J Clin Oncol 2004;22:4926–4933.

    Article  PubMed  Google Scholar 

  108. Krishnan A, Bhatia S, Slovak ML, et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood 2000;95:1588–1593.

    CAS  PubMed  Google Scholar 

  109. Sobecks RM, Le Beau MM, Anastasi J, Williams SF. Myelodysplasia and acute leukemia following high-dose chemotherapy and autologous bone marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant 1999;23:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  110. Abruzzese E, Radford JE, Miller JS, et al. Detection of abnormal pretransplant clones in progenitor cells of patients who developed myelodysplasia after autologous transplantation. Blood 1999;94:1814–1819.

    CAS  PubMed  Google Scholar 

  111. Legare RD, Gribben JG, Maragh M, et al. Prediction of therapy-related acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) after autologous bone marrow transplant (ABMT) for lymphoma. Am J Hematol 1997;56:45–51.

    Article  CAS  PubMed  Google Scholar 

  112. Martinez-Climent JA, Comes AM, Vizcarra E, et al. Chromosomal abnormalities in women with breast cancer after autologous stem cell transplantation are infrequent and may not predict development of therapy-related leukemia or myelodysplastic syndrome. Bone Marrow Transplant 2000;25:1203–1208.

    Article  CAS  PubMed  Google Scholar 

  113. Doti CA, Gondolesi GE, Sheiner PA, Emre S, Miller CM, Aledort LM. Leukemia after liver transplant. Transplantation 2001;72:1643–1646.

    Article  CAS  PubMed  Google Scholar 

  114. Dixit MP, Farias KB, McQuade M, Scott KM. Acute myelo-monocytic infiltrate of the lower esophagus in a 4-year-old renal transplant recipient. Am J Kidney Dis 2003;41:E16.

    PubMed  Google Scholar 

  115. Camos M, Esteve J, Rimola A, et al. Increased incidence of acute myeloid leukemia after liver transplantation? Description of three new cases and review of the literature. Transplantation 2004;77:311–313.

    Article  PubMed  Google Scholar 

  116. Coyle TE, Bair AK, Stein C, Vajpayee N, Mehdi S, Wright J. Acute leukemia associated with valproic acid treatment: a novel mechanism for leukemogenesis? Am J Hematol 2005;78:256–260.

    Article  CAS  PubMed  Google Scholar 

  117. Uchida A, Matsuo K, Tanimoto M. APL during gefitinib treatment for non-small-cell lung cancer. N Engl J Med 2005;352:843.

    Article  CAS  PubMed  Google Scholar 

  118. Rund D, Ben-Yehuda D. Therapy-related leukemia and myelodysplasia: evolving concepts of pathogenesis and treatment. Hematology 2004;9:179–187.

    Article  CAS  PubMed  Google Scholar 

  119. Molldrem JJ, Caples M, Mavroudis D, Plante M, Young NS, Barrett AJ. Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol 1997;99:699–705.

    Article  CAS  PubMed  Google Scholar 

  120. Hoyle CF, de Bastos M, Wheatley K, et al. AML associated with previous cytotoxic therapy, MDS or myeloproliferative disorders: results from the MRC’s 9th AML trial. Br J Haematol 1989;72:45–53.

    Article  CAS  PubMed  Google Scholar 

  121. Ganser A, Heil G, Seipelt G, et al. Intensive chemotherapy with idarubicin, ara-C, etoposide, and m-AMSA followed by immunotherapy with interleukin-2 for myelodysplastic syndromes and high-risk Acute Myeloid Leukemia (AML). Ann Hematol 2000;79:30–35.

    Article  CAS  PubMed  Google Scholar 

  122. Philpott N, Mehta J, Treleaven J, Powles R. Idarubicin, high-dose cytarabine and etoposide for remission induction in therapy-related acute myeloid leukemia. Leuk Lymphoma 1994;15:127–130.

    Article  CAS  PubMed  Google Scholar 

  123. Mehta J, Powles R, Singhal S, et al. Idarubicin, high-dose cytarabine, and etoposide for induction of remission in acute leukemia. Semin Hematol 1996;33:18–23.

    CAS  PubMed  Google Scholar 

  124. Gardin C, Chaibi P, de Revel T, et al. Intensive chemotherapy with idarubicin, cytosine arabinoside, and granulocyte colony-stimulating factor (G-CSF) in patients with secondary and therapy-related acute myelogenous leukemia. Club de Reflexion en Hematologie. Leukemia 1997;11:16–21.

    Article  CAS  PubMed  Google Scholar 

  125. Takeyama K, Seto M, Uike N, et al. Therapy-related leukemia and myelodysplastic syndrome: a large-scale Japanese study of clinical and cytogenetic features as well as prognostic factors. Int J Hematol 2000; 71: 144–152.

    CAS  PubMed  Google Scholar 

  126. Carella AM, Dejana A, Lerma E, et al. In vivo mobilization of karyotypically normal peripheral blood progenitor cells in high-risk MDS, secondary or therapy-related acute myelogenous leukaemia. Br J Haematol 1996;95:127–130.

    Article  CAS  PubMed  Google Scholar 

  127. De Witte T, Van Biezen A, Hermans J, et al. Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS. Chronic and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation. Blood 1997;90:3853–3857.

    PubMed  Google Scholar 

  128. Anderson JE, Gooley TA, Schoch G, et al. Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood 1997; 89:2578–2585.

    CAS  PubMed  Google Scholar 

  129. Yakoub-Agha I, de La Salmoniere P, Ribaud P, et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol 2000;18:963–971.

    CAS  PubMed  Google Scholar 

  130. Hale GA, Heslop HE, Bowman LC, et al. Bone marrow transplantation for therapy-induced acute myeloid leukemia in children with previous lymphoid malignancies. Bone Marrow Transplant 1999;24:735–739.

    Article  CAS  PubMed  Google Scholar 

  131. Cesaro S, Messina C, Rosolen A, et al. Successful treatment of secondary acute myeloid leukemia relapsing after allogeneic bone marrow transplantation with donor lymphocyte infusion failed to prevent recurrence of primary disease: a case report. Bone Marrow Transplant 1999;23:625–628.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Godley, L.A., Le Beau, M.M. (2007). Therapy-related AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics