Skip to main content

Treatment, Outcomes, and Challenges of Newly Diagnosed AML in Children and Adolescents

  • Chapter
  • 1178 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

Acute myeloid leukemia (AML) in children encompasses a distinctive set of diseases with special considerations related to age, drug metabolism, and both short- and long-term sequelae. This chapter will emphasize inherited syndromes that predispose to leukemogenesis, development of secondary AML, and the roles of dose intensification and stem cell transplantation in the ongoing improvement in cure rates. The importance of risk stratification in the design of clinical trials, based on cytogenetic and molecular characteristics, is critical to optimizing the balance between curability, quality of life, and minimization of long-term sequelae for children with AML.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith MA, Gloeckler-Ries LA, Gurney JG, Ross JA. Leukemia. In: Ries LAG, et al., eds. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program. Bethesda, MD: NIH, 1999:17–34.

    Google Scholar 

  2. Parkin DM, Stiller CA, Draper GJ, et al. International Incidence of Childhood Cancer. Lyon: IARC Scientific Publication No. 87, 1988.

    Google Scholar 

  3. Ross JA, Davies SM, Potter JD. Epidemiology of childhood leukemia, with a focus on infants. Epidemiol Rev 1994;16:243–272.

    CAS  PubMed  Google Scholar 

  4. Robison LL, Ross JA. Epidemiology of leukaemias and lymphomas in childhood. In: Chessels J, Hann I, eds. Bailliere’s Clinical Paediatrics. London: W.B. Saunders Co., 1995:639–657.

    Google Scholar 

  5. Le Deley MC, Leblanc T, Shamsaldin A, et al. Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Societe Francaise d’Oncologie Pediatrique. J Clin Oncol 2003;21(6):1074–1081.

    PubMed  Google Scholar 

  6. Micallef IN, Lillington DM, Apostolidis J, et al. Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol 2000;18(5):947–955.

    CAS  PubMed  Google Scholar 

  7. Smith MA, McCaffrey RP, Karp JE. The secondary leukemias: challenges and research directions. J Natl Cancer Inst 1996;88(7):407–418.

    CAS  PubMed  Google Scholar 

  8. Ross JA, Spector LG, Robison LL, Olshan AF. Epidemiology of leukemia in children with Down syndrome. Pediatr Blood Cancer 2005;44(1):8–12.

    PubMed  Google Scholar 

  9. Gamis AS. Acute myeloid leukemia and Down syndrome evolution of modern therapy—state of the art review. Pediatr Blood Cancer 2005;44(1):13–20.

    PubMed  Google Scholar 

  10. Massey GV, Zipursky A, Chang MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood 2006;107(12):4606–4613.

    CAS  PubMed  Google Scholar 

  11. Doyle JJ, Thorner P, Poon A, Tanswell K, Kamel-Reid S, Zipursky A. Transient leukemia followed by megakaryoblastic leukemia in a child with mosaic Down syndrome. Leuk Lymphoma 1995;17(3–4):345–350.

    CAS  PubMed  Google Scholar 

  12. Cushing T, Clericuzio CL, Wilson CS, et al. Risk for leukemia in infants without Down syndrome who have transient myeloproliferative disorder. J Pediatr 2006;148(5):687–689.

    PubMed  Google Scholar 

  13. Reeves RH. Down syndrome mouse models are looking up. Trends Mol Med 2006;12(6):237–240.

    CAS  PubMed  Google Scholar 

  14. Crispino JD. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer 2005; 44(1):40–44.

    PubMed  Google Scholar 

  15. Shimada A, Xu G, Toki T, Kimura H, Hayashi Y, Ito E. Fetal origin of the GATA1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Blood 2004;103(1):366.

    CAS  PubMed  Google Scholar 

  16. Taub JW, Mundschau G, Ge Y, et al. Prenatal origin of GATA1 mutations may be an initiating step in the development of megakaryocytic leukemia in Down syndrome. Blood 2004;104(5):1588–1589.

    CAS  PubMed  Google Scholar 

  17. Hitzler JK, Zipursky A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer 2005;5(1):11–20.

    CAS  PubMed  Google Scholar 

  18. Ge Y, Dombkowski AA, LaFiura KM, et al. Differential gene expression, GATA1 target genes, and the chemotherapy sensitivity of Down syndrome megakaryocytic leukemia. Blood 2006;107(4):1570–1581.

    CAS  PubMed  Google Scholar 

  19. Lightfoot J, Hitzler JK, Zipursky A, Albert M, Macgregor PF. Distinct gene signatures of transient and acute megakaryoblastic leukemia in Down syndrome. Leukemia 2004;18(10):1617–123.

    CAS  PubMed  Google Scholar 

  20. Harigae H, Xu G, Sugawara T, Ishikawa I, Toki T, Ito E. The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome. Blood 2004;103(8):3242–3243.

    CAS  PubMed  Google Scholar 

  21. Chaganti RS, Bailey RB, Jhanwar SC, Arlin ZA, Clarkson BD. Chronic myelogenous leukemia in the monosomic cell line of a fertile Turner syndrome mosaic (45,X/46,XX). Cancer Genet Cytogenet 1982; 5(3):215–221.

    CAS  PubMed  Google Scholar 

  22. Oguma N, Takemoto M, Oda K, et al. Chronic myelogenous leukemia and Klinefelter’s syndrome. Eur J Haematol 1989;42(2):207–208.

    CAS  PubMed  Google Scholar 

  23. Auerbach AD. Fanconi anemia and leukemia: tracking the genes. Leukemia 1992;6(suppl 1):1–4.

    PubMed  Google Scholar 

  24. Rosenberg PS, Huang Y, Alter BP. Individualized risks of first adverse events in patients with Fanconi anemia. Blood 2004;104(2):350–355.

    CAS  PubMed  Google Scholar 

  25. Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer 2003;97(2):425–440.

    PubMed  Google Scholar 

  26. D’Andrea AD. The Fanconi road to cancer. Genes Dev 2003;17(16):1933–1936.

    PubMed  Google Scholar 

  27. Gurtan AM, D’Andrea AD. Dedicated to the core: Understanding the Fanconi anemia complex. DNA Repair 2006;5(9–10):1119–1125.

    CAS  PubMed  Google Scholar 

  28. Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood 2006; 107(11):4223–4233.

    CAS  PubMed  Google Scholar 

  29. Marrone A, Dokal I. Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer. Expert Rev Mol Med 2004;6(26):1–23.

    PubMed  Google Scholar 

  30. Vulliamy TJ, Knight SW, Mason PJ, Dokal I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol Dis 2001;27(2):353–357.

    CAS  PubMed  Google Scholar 

  31. Polychronopoulou S, Koutroumba P. Telomere length variation and telomerase activity expression in patients with congenital and acquired aplastic anemia. Acta Haematol 2004;111(3):125–131.

    CAS  PubMed  Google Scholar 

  32. Fundia A, Gorla N, Larripa I. Non-random distribution of spontaneous chromosome aberrations in two Bloom syndrome patients. Hereditas, 1995;122(3):239–243.

    CAS  PubMed  Google Scholar 

  33. Poppe B, Van Limbergen H, Van Roy N, et al. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet 2001;128(1):39–42.

    CAS  PubMed  Google Scholar 

  34. Viniou N, Terpos E, Rombos J, et al. Acute myeloid leukemia in a patient with ataxia-telangiectasia: a case report and review of the literature. Leukemia 2001;15(10):1668–1670.

    CAS  PubMed  Google Scholar 

  35. Khanna KK. Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 2000;92(10):795–802.

    CAS  PubMed  Google Scholar 

  36. Buijs A, Poddighe P, van Wijk R, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood 2001;98(9):2856–2858.

    CAS  PubMed  Google Scholar 

  37. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia (see comments). Nat Genet 1999;23(2):166–175.

    CAS  PubMed  Google Scholar 

  38. Tonelli R, Scardovi AL, Pession A, et al. Compound heterozygosity for two different amino-acid substitution mutations in the thrombopoietin receptor (c-mpl gene) in congenital amegakaryocytic thrombocytopenia (CAMT). Hum Genet 2000;107(3):225–233.

    CAS  PubMed  Google Scholar 

  39. Zeidler C, Schwinzer B, Welte K. Congenital neutropenias. Rev Clin Exp Hematol 2003;7(1):72–83.

    PubMed  Google Scholar 

  40. Horwitz M, Li FQ, Albani D, et al. Leukemia in severe congenital neutropenia: defective proteolysis suggests new pathways to malignancy and opportunities for therapy. Cancer Invest 2003;21(4):579–587.

    CAS  PubMed  Google Scholar 

  41. Carlsson G, Aprikyan AA, Goransdotter Ericson K, et al. Neutrophil elastase and granulocyte colonystimulating factor receptor mutation analyses and leukemia evolution in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Haematologica 2006;91(5):589–595.

    CAS  PubMed  Google Scholar 

  42. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000;96(7):2317–2322.

    CAS  PubMed  Google Scholar 

  43. Dale DC, Bolyard AA, Aprikyan A. Cyclic neutropenia. Semin Hematol 2002;39(2):89–94.

    CAS  PubMed  Google Scholar 

  44. Hunter MG, Avalos BR. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood 2000;95(6):2132–2137.

    CAS  PubMed  Google Scholar 

  45. Zeidler C, Boxer L, Dale DC, Freedman MH, Kinsey S, Welte K. Management of Kostmann syndrome in the G-CSF era. Br J Haematol 2000;109(3):490–495.

    CAS  PubMed  Google Scholar 

  46. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol 2002; 39(2):82–88.

    CAS  PubMed  Google Scholar 

  47. Dror Y. Shwachman-Diamond syndrome. Pediatr Blood Cancer 2005;45(7):892–901.

    PubMed  Google Scholar 

  48. Kawakami T, Mitsui T, Kanai M, et al. Genetic analysis of Shwachman-Diamond syndrome: phenotypic heterogeneity in patients carrying identical SBDS mutations. Tohoku J Exp Med 2005;206(3):253–259.

    CAS  PubMed  Google Scholar 

  49. Majeed F, Jadko S, Freedman MH, Dror Y. Mutation analysis of SBDS in pediatric acute myeloblastic leukemia. Pediatr Blood Cancer 2005;45(7):920–924.

    PubMed  Google Scholar 

  50. Nicolis E, Bonizzat A, Assael BM, Cipoli M. Identification of novel mutation in patients with Shwachman-Diamond Syndrome. Hum Mutal 2005;25(4):410.

    Google Scholar 

  51. Nicolis A, Klein GW, Lipton JM. The Diamond Blackfan Anemia Registry: tool for investigating the epidemiology and biology of Diamond-Blackfan anemia. J Pediatr Hematol Oncol 2001;23(6):377–382.

    Google Scholar 

  52. Willig TN, Draptchinskaia N, Dianzani I, et al. Mutations in ribosomal protein S19 gene and diamond blackfan anemia: wide variations in phenotypic expression. Blood 1999;94(12):4294–4306.

    CAS  PubMed  Google Scholar 

  53. Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999;21(2):169–175.

    CAS  PubMed  Google Scholar 

  54. Cmejla R, Blafkova J, Stopka T, et al. Ribosomal protein S19 gene mutations in patients with diamond-blackfan anemia and identification of ribosomal protein S19 pseudogenes. Blood Cells Mol Dis 2000;26(2):124–132.

    CAS  PubMed  Google Scholar 

  55. Gazda H, Lipton JM, Willig TN, et al. Evidence for linkage of familial Diamond-Blackfan anemia to chromosome 8p23.3-p22 and for non-19q non-8q disease. Blood 2001;97(7):2145–2150.

    CAS  PubMed  Google Scholar 

  56. Liu JM, Ellis SR. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 2006;107(12):4583–4588.

    CAS  PubMed  Google Scholar 

  57. Ellis SR, Massey AT. Diamond Blackfan anemia: a paradigm for a ribosome-based disease. Med Hypotheses 2006;66(3):643–648.

    PubMed  Google Scholar 

  58. Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004;2(5):E139.

    Google Scholar 

  59. Dasgupta B, Gutmann DH. Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Genet Dev 2003;13(1):20–27.

    CAS  PubMed  Google Scholar 

  60. Shannon KM, Watterson J, Johnson P, et al. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood 1992;79(5):1311–1318.

    CAS  PubMed  Google Scholar 

  61. Nakai H, Misawa S, Horiike S, et al. Analysis of mutations and expression of GAP-related domain of the neurofibromatosis type 1 (NF1) gene in the progression of chronic myelogenous leukemia. Leukemia 1994;8(6):1027–1033.

    CAS  PubMed  Google Scholar 

  62. Baralle D, Mattocks C, Kalidas K, et al. Different mutations in the NF1 gene are associated with Neurofibromatosis-Noonan syndrome (NFNS). Am J Med Genet 2003;119A(1):1–8.

    PubMed  Google Scholar 

  63. Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004;103(6):2325–2331.

    CAS  PubMed  Google Scholar 

  64. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;28:28.

    Google Scholar 

  65. Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood 2003;102(7):2321–2333.

    CAS  PubMed  Google Scholar 

  66. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003;3(9):639–649.

    CAS  PubMed  Google Scholar 

  67. Greaves M. Prenatal origins of childhood leukemia. Rev Clin Exp Hematol 2003;7(3):233–245.

    CAS  PubMed  Google Scholar 

  68. Maia AT, Ford AM, Jalali GR, et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood 2001;98(2):478–482.

    CAS  PubMed  Google Scholar 

  69. Horwitz M. The genetics of familial leukemia. Leukemia 1997;11(8):1347–1359.

    CAS  PubMed  Google Scholar 

  70. Riccardi VM, Humbert JR, Peakman D. Acute leukemia associated with trisomy 8 mosaicism and a familial translocation 46,XY,t(7;20)(p13;p12). Am J Med Genet 1978;2(1):15–21.

    CAS  PubMed  Google Scholar 

  71. Markkanen A, Ruutu T, Rasi V, Franssila K, S Knuutila, de la Chapelle A. Constitutional translocation t(3;6)(p14;p11) in a family with hematologic malignancies. Cancer Genet Cytogenet 1987;25(1):87–95.

    CAS  PubMed  Google Scholar 

  72. Minelli A, Maserati E, Giudici G, et al. Familial partial monosomy 7 and myelodysplasia: different parental origin of the monosomy 7 suggests action of a mutator gene. Cancer Genet Cytogenet 2001;124(2):147–151.

    CAS  PubMed  Google Scholar 

  73. Socie G, Henry-Amar M, Bacigalupo A, et al. Malignant tumors occurring after treatment of aplastic anemia. N Engl J Med 1993;329:1152–1157.

    CAS  PubMed  Google Scholar 

  74. Maciejewski JP, Selleri C. Evolution of clonal cytogenetic abnormalities in aplastic anemia. Leuk Lymphoma 2004;45(3):433–440.

    PubMed  Google Scholar 

  75. Geissler D, Thaler J, Konwalinka G, Peschel C. Progressive preleukemia presenting amegakaryocytic thrombocytopenic purpura: association of the 5q-syndrome with a decreased megakaryocytic colony formation and a defective production of Meg-CSF. Leuk Res 1987;11(8):731–737.

    CAS  PubMed  Google Scholar 

  76. Xue Y, Zhang R, Guo Y, Gu J, Lin B. Acquired amegakaryocytic thrombocytopenic purpura with a Philadelphia chromosome. Cancer Genet Cytogenet 1993;69(1):51–56.

    CAS  PubMed  Google Scholar 

  77. Harris JW, Koscick R, Lazarus HM, Eshleman JR, Medof ME. Leukemia arising out of aparoxysmal nocturnal hemoglobinuria. Leuk Lymphoma 1999;32(5–6):401–426.

    CAS  PubMed  Google Scholar 

  78. McBride ML. Childhood cancer and environmental contaminants. Can J Public Health 1998;89 (suppl 1): S53–62, S58–68.

    Google Scholar 

  79. Yin SN, Hayes RB, Linet MS, et al. A cohort study of cancer among benzene-exposed workers in China: overall results. Am J Ind Med 1996;29(3):227–235.

    CAS  PubMed  Google Scholar 

  80. Yin SN, Hayes RB, Linet MS, et al. An expanded cohort study of cancer among benzene-exposed workers in China. Benzene Study Group. Environ Health Perspect, 1996;104(suppl 6):1339–1341.

    PubMed  Google Scholar 

  81. Shimizu Y, Schull WI, Kato H. Cancer risk among atomic bomb survivors: the RERF Life Span Study. JAMA 1990;264:601.

    CAS  PubMed  Google Scholar 

  82. Jablon S, Kato H. Childhood cancer in relation to prenatal exposure to atomic-bomb radiation. Lancet 1970;2:1000.

    CAS  PubMed  Google Scholar 

  83. Linet MS, Hatch EE, Kleinerman RA, et al. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med 1997;337(1):1–7.

    CAS  PubMed  Google Scholar 

  84. Theriault G, Goldberg M, Miller AB, et al. Cancer risks associated with occupational exposure to magnetic fields among electric utility workers in Ontario and Quebec, Canada. Am J Epidemiol 1994;139:550.

    CAS  PubMed  Google Scholar 

  85. Shu XO, Ross JA, Pendergrass TW, Reaman GH, Lampkin B, Robison LL. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study. J Natl Cancer Inst 1996;88(1):24–31.

    CAS  PubMed  Google Scholar 

  86. Stjernfeldt M, Berglund K, Lindsten J, Ludvigsson J. Maternal smoking and irradiation during pregnancy as risk factors for child leukemia. Cancer Detect PRev 1992;16(2):129–135.

    CAS  PubMed  Google Scholar 

  87. John EM, Savitz DA, Sandler DP. Prenatal exposure to parents’ smoking and childhood cancer. Am J Epidemiol 1991;133(2):123–132.

    CAS  PubMed  Google Scholar 

  88. Robison LL, Buckley JD, Daigle AE, et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 1989;63(10):1904–1911.

    CAS  PubMed  Google Scholar 

  89. Alexander FE, Patheal SL, Biondi A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001;61(6):2542–2546.

    CAS  PubMed  Google Scholar 

  90. Ross JA. Dietary flavonoids and the MLL gene: A pathway to infant leukemia? Proc Natl Acad Sci USA 2000;97(9):4411–4413.

    CAS  PubMed  Google Scholar 

  91. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 2000;97(9):4790–4795.

    CAS  PubMed  Google Scholar 

  92. van Leeuwen FE. Risk of acute myelogenous leukaemia and myelodysplasia following cancer treatment. Baillieres Clin Haematol 1996;9(1):57–85.

    PubMed  Google Scholar 

  93. Stine KC, Saylors RL, Sawyer JR, Becton DL. Secondary acute myelogenous leukemia following safe exposure to etoposide. J Clin Oncol 1997;15(4):1583–1586.

    CAS  PubMed  Google Scholar 

  94. Duffner PK, Krischer JP, Horowitz ME, et al. Second malignancies in young children with primary brain tumors following treatment with prolonged postoperative chemotherapy and delayed irradiation: a Pediatric Oncology Group study. Ann Neurol 1998;44(3):313–316.

    CAS  PubMed  Google Scholar 

  95. Kletzel M, Katzenstein HM, Haut PR, et al. Treatment of high-risk neuroblastoma with triple-tandem high-dose therapy and stem-cell rescue: results of the Chicago Pilot II Study. J Clin Oncol 2002;20(9):2284–2292.

    CAS  PubMed  Google Scholar 

  96. George RE, Li S, Medeiros-Nancarrow C, et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 2006;24(18):2891–2896.

    PubMed  Google Scholar 

  97. Sandoval C, Pui CH, Bowman LC, et al. Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 1993;11(6):1039–1045.

    CAS  PubMed  Google Scholar 

  98. Relling MV, Yanishevski Y, Nemec J, et al. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12(3):346–352.

    CAS  PubMed  Google Scholar 

  99. Megonigal MD, Cheung NK, Rappaport EF, et al. Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc Natl Acad Sci USA 2000;97(6):2814–2819.

    CAS  PubMed  Google Scholar 

  100. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367(6464):645–648.

    CAS  PubMed  Google Scholar 

  101. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730–737.

    CAS  PubMed  Google Scholar 

  102. Sutherland HJ, Blair A, Zapf RW. Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood 1996;87(11):4754–4761.

    CAS  PubMed  Google Scholar 

  103. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5(7):738–743.

    CAS  PubMed  Google Scholar 

  104. Dick JE. Acute myeloid leukemia stem cells. Ann NY Acad Sci 2005;1044:1–5.

    PubMed  Google Scholar 

  105. Warner JK, Wang JC, Takenaka K, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia 2005;19(10):1794–1805.

    CAS  PubMed  Google Scholar 

  106. Chan IT, Kutok JL, Williams IR, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 2006;108(9):1708–1715.

    CAS  PubMed  Google Scholar 

  107. Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology (Am Soc Hematol Educ Program), 2004:80–97.

    Google Scholar 

  108. Jordan CT. The potential of targeting malignant stem cells as a treatment for leukemia. Future Oncol 2005;1(2):205–207.

    PubMed  Google Scholar 

  109. Jordan CT. A new approach to treatment of acute myelogenous leukemia using targeted therapy in combination with standard chemotherapy. Leuk Res 2004;28(11):1121–1122.

    PubMed  Google Scholar 

  110. Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002;99(25):16,220–16,225.

    CAS  PubMed  Google Scholar 

  111. Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005;5(4):311–321.

    CAS  PubMed  Google Scholar 

  112. Kersey JH. Fifty years of studies of the biology and therapy of childhood leukemia. Blood 1997;90(11):4243–4251.

    CAS  PubMed  Google Scholar 

  113. Arceci RJ. Progress and controversies in the treatment of pediatric acute myelogenous leukemia. Curr Opin Hematol 2002;9(4):353–360.

    PubMed  Google Scholar 

  114. Clark JJ, Smith FO, Arceci RJ. Update in childhood acute myeloid leukemia: recent developments in the molecular basis of disease and novel therapies. Curr Opin Hematol 2003;10(1):31–39.

    CAS  PubMed  Google Scholar 

  115. Arceci RJ, Golub T. Acute myelogenous leukemia In: P. Pizzo and D. Poplack, Editors. Principles and Practice of Pediatric Oncology, Lippincott Williams and Wilkins: Philadelphia, 2006:591–644.

    Google Scholar 

  116. Yates J, Glidewell O, Wiernik P, et al. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood 1982;60(2):454–462.

    CAS  PubMed  Google Scholar 

  117. Buckley JD, Lampkin BC, Nesbit ME, et al. Remission induction in children with acute non-lymphocytic leukemia using cytosine arabinoside and doxorubicin or daunorubicin: a report from the Childrens Cancer Study Group. Med Pediatr Oncol 1989;17(5):382–390.

    CAS  PubMed  Google Scholar 

  118. Creutzig U, Korholz D, Niemeyer CM, et al. Toxicity and effectiveness of high-dose idarubicin during AML induction therapy: results of a pilot study in children. Klin Padiatr 2000;212(4):163–168.

    CAS  PubMed  Google Scholar 

  119. Lange BJ, Dinndorf P, Smith FO, et al. Pilot study of idarubicin-based intensive-timing induction therapy for children with previously untreated acute myeloid leukemia: Children’s Cancer Group Study 2941. J Clin Oncol 2004;22(1):150–156.

    CAS  PubMed  Google Scholar 

  120. Wheatley K. Meta-analysis of randomized trials of idarubicin (IDAR) or metozantrone (Mito) vs daunorubicin (DNR) as induction therapy for acute myeloid leukaemia (AML). Blood 1995;86:43A.

    Google Scholar 

  121. Gibson BE, Wheatley K, Hann IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005;19(12):2130–2138.

    CAS  PubMed  Google Scholar 

  122. Hann IM, Webb DK, Gibson BE, Harrison CJ. MRC trials in childhood acute myeloid leukaemia. Ann Hematol 2004;83 (suppl 1):S108–112.

    Google Scholar 

  123. Volger WR, Weiner RS, Moore JO, Omura GA, Bartolucci AA, Stagg M. Long-term follow-up of a randomized post-induction therapy trial in acute myelogenous leukemia (a Southeastern Cancer Study Group trial). Leukemia 1995;9(9):1456–1460.

    CAS  PubMed  Google Scholar 

  124. Steuber CP, Civin C, Krischer J, et al. A comparison of induction and maintenance therapy for acute nonlymphocytic leukemia in childhood: results of a Pediatric Oncology Group study. J Clin Oncol 1991;9(2):247–258.

    CAS  PubMed  Google Scholar 

  125. Dillman RO, Davis RB, Green MR, et al. A comparative study of two different doses of cytarabine for acute myeloid leukemia: a phase III trial of Cancer and Leukemia Group B. Blood 1991;78(10): 2520–2526.

    CAS  PubMed  Google Scholar 

  126. Bishop JF, Matthews JP, Young GA, et al. A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 1996;87(5):1710–1717.

    CAS  PubMed  Google Scholar 

  127. Weick JK, Kopecky KJ, Appelbaum FR, et al. A randomized investigation of high-dose vs standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group study. Blood 1996;88(8):2841–2851.

    CAS  PubMed  Google Scholar 

  128. Becton D, Dahl GV, Ravindranath Y, et al. Randomized use of cyclosporin A (CsA) to modulate P-glyco-protein in children with AML in remission: Pediatric Oncology Group Study 9421. Blood 2006;107(4):1315–1324.

    CAS  PubMed  Google Scholar 

  129. Hann IM, Stevens RF, Goldstone AH, et al. Randomized comparison of DAT vs ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 1997;89(7):2311–2318.

    CAS  PubMed  Google Scholar 

  130. Heil G, Hoelzer D, Sanz MA, et al. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 1997;90(12):4710–4718.

    CAS  PubMed  Google Scholar 

  131. Takeshita A, Ohno R, Hirashima K, et al. A randomized double-blind controlled study of recombinant human granulocyte colony-stimulating factor in patients with neutropenia induced by consolidation chemotherapy for acute myeloid leukemia. (rG-CSF clinical study group). Rinsho Ketsueki, 1995;36(6):606–614.

    CAS  PubMed  Google Scholar 

  132. Ganser A, Heil G. Use of hematopoietic growth factors in the treatment of acute myelogenous leukemia. Curr Opin Hematol 1997;4(3):191–195.

    CAS  PubMed  Google Scholar 

  133. Witz F, Sadoun A, Perrin MC, et al. A placebo-controlled study of recombinant human granulocyte-macrophage colony-stimulating factor administered during and after induction treatment for de novo acute myelogenous leukemia in elderly patients. Groupe Ouest Est Leucemies Aigues Myeloblastiques (GOELAM). Blood 1998;91(8):2722–2730.

    CAS  PubMed  Google Scholar 

  134. Ozkaynak MF, Krailo M, Chen Z, Feusner J. Randomized comparison of antibiotics with and without granulocyte colony-stimulating factor in children with chemotherapy-induced febrile neutropenia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2005;45(3):274–280.

    PubMed  Google Scholar 

  135. Alonzo TA, Kobrinsky NL, Aledo A, Lange BJ, Buxton AB, Woods WG. Impact of granulocyte colonystimulating factor use during induction for acute myelogenous leukemia in children: a report from the Children’s Cancer Group. J Pediatr Hematol Oncol 2002;24(8):627–635.

    PubMed  Google Scholar 

  136. Moon HW, Shin S, Kim HY, et al. Therapeutic use of granulocyte-colony stimulating factor could conceal residual malignant cells in patients with AML1/ETO(+) acute myelogenous leukemia Leukemia 2006;20(8):1408–1413.

    CAS  PubMed  Google Scholar 

  137. Schiffer CA, Dodge R, Larson RA. Long-term follow-up of Cancer and Leukemia Group B studies in acute myeloid leukemia. Cancer 1997;80(11 suppl):2210–2214.

    CAS  PubMed  Google Scholar 

  138. Rees JK. Chemotherapy of acute myeloid leukaemia (AML) in UK: past, present and future. Bone Marrow Transplant 1989;4 (suppl 1):110–113.

    PubMed  Google Scholar 

  139. Michel G, Leverger G, Leblanc T, et al. Allogeneic bone marrow transplantation vs aggressive post-remission chemotherapy for children with acute myeloid leukemia in first complete remission. A prospective study from the French Society of Pediatric Hematology and Immunology (SHIP). Bone Marrow Transplant 1996;17(2):191–196.

    CAS  PubMed  Google Scholar 

  140. Creutzig U, Ritter J, Schellong G. Identification of two risk groups in childhood acute myelogenous leukemia after therapy intensification in study AML-BFM-83 as compared with study AML-BFM-78. AML-BFM Study Group. Blood 1990;75(10):1932–1940.

    CAS  PubMed  Google Scholar 

  141. Sartori PC, Taylor MH, Stevens MC, Darbyshire PJ, Mann JR. Treatment of childhood acute myeloid leukaemia using the BFM-83 protocol. Med Pediatr Oncol 1993;21 (1):8–13.

    CAS  PubMed  Google Scholar 

  142. Creutzig U, Ritter J, Zimmermann M, Schellong G. Does cranial irradiation reduce the risk for bone marrow relapse in acute myelogenous leukemia? Unexpected results of the Childhood Acute Myelogenous Leukemia Study BFM-87. J Clin Oncol 1993;11(2):279–286.

    CAS  PubMed  Google Scholar 

  143. Lie SO, Abrahamsson J, Clausen N, et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol 2003;122(2):217–225.

    PubMed  Google Scholar 

  144. Woods WG, Neudorf S, Gold S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission: a report from the Children’s cancer group. Blood 2001;97(1):56–62.

    CAS  PubMed  Google Scholar 

  145. Woods WG, Kobrinsky N, Buckley JD, et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children’s Cancer Group. Blood 1996;87(12):4979–4989.

    CAS  PubMed  Google Scholar 

  146. Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 2005;106(4):1183–1188.

    CAS  PubMed  Google Scholar 

  147. Gilliland DG. Targeted therapies in myeloid leukemias. Ann Hematol 2004;83 (suppl 1):S75–76.

    Google Scholar 

  148. Dahl GV, Kalwinsky DK, Mirro J, Look AT. A comparison of cytokinetically based vs intensive chemotherapy for childhood acute myelogenous leukemia. Hämatol Bluttransfus 1987;30:83–87.

    CAS  Google Scholar 

  149. Baehner RL, Kennedy A, Sather H, Chard RL, Hammond D. Characteristics of children with acute nonlymphocytic leukemia in long-term continuous remission: a report for Childrens Cancer Study Group. Med Pediatr Oncol 1981;9(4):393–403.

    CAS  PubMed  Google Scholar 

  150. Ritter J, Creutzig U, Schellong G. Treatment results of three consecutive German childhood AML trials: BFM-78,-83, and-87. AML-BFM-Group. Leukemia 1992;6(suppl 2):59–62.

    PubMed  Google Scholar 

  151. Weinstein HJ, Mayer RJ, Rosenthal DS, Coral FS, Camitta BM, Gelber RD. Chemotherapy for acute myelogenous leukemia in children and adults: VAPA update Blood 1983;62(2):315–319.

    CAS  PubMed  Google Scholar 

  152. Weinstein HJ, Mayer RJ, Rosenthal DS, et al. Treatment of acute myelogenous leukemia in children and adults. N Engl J Med 1980;303(9):473–478.

    CAS  PubMed  Google Scholar 

  153. Grier HE, Gelber RD, Link MP, Camitta BP, Clavell LA, Weinstein HJ. Intensive sequential chemotherapy for children with acute myelogenous leukemia: VAPA, 80-035, and HI-C-Daze. Leukemia 1992;6(suppl 2): 48–51.

    PubMed  Google Scholar 

  154. Dahl GV, Kalwinsky DK, Mirro J, et al. Allogeneic bone marrow transplantation in a program of intensive sequential chemotherapy for children and young adults with acute nonlymphocytic leukemia in first remission. J Clin Oncol 1990;8(2):295–303.

    CAS  PubMed  Google Scholar 

  155. Rees JK, Gray RG, Swirsky D, Hayhoe FG. Principal results of the Medical Research Council’s 8th acute myeloid leukaemia trial. Lancet 1986;2(8518):1236–1241.

    CAS  PubMed  Google Scholar 

  156. Rees JK, Gray RG, Wheatley K. Dose intensification in acute myeloid leukaemia: greater effectiveness at lower cost. Principal report of the Medical Research Council’s AML9 study. MRC Leukaemia in Adults Working Party. Br J Haematol 1996;94(1):89–98.

    CAS  PubMed  Google Scholar 

  157. Perel Y, Auvrignon A, Leblanc T, et al. Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. Leucamie Aique Myeloide Enfant. J Clin Oncol 2002;20(12):2774–2782.

    PubMed  Google Scholar 

  158. Preisler HD, Raza A, Rustum Y, Browman G. The treatment of patients with acute nonlymphocytic leukemia in remission. Semin Oncol 1985;12(2 suppl 3):91–97.

    CAS  PubMed  Google Scholar 

  159. Buchner T, Urbanitz D, Hiddemann W, et al. Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multicenter studies of the German AML Cooperative Group. J Clin Oncol 1985;3(12):1583–1589.

    CAS  PubMed  Google Scholar 

  160. Wells RJ, Woods WG, Lampkin BC, et al. Impact of high-dose cytarabine and asparaginase intensification on childhood acute myeloid leukemia: a report from the Childrens Cancer Group. J Clin Oncol 1993;11(3): 538–545.

    CAS  PubMed  Google Scholar 

  161. Ravindranath Y, Steuber CP, Krischer J, et al. High-dose cytarabine for intensification of early therapy of childhood acute myeloid leukemia: a Pediatric Oncology Group study. J Clin Oncol 1991;9(4):572–580.

    CAS  PubMed  Google Scholar 

  162. Woods WG, Kobrinsky N, Buckley J, et al. Intensively timed induction therapy followed by autologous or allogeneic bone marrow transplantation for children with acute myeloid leukemia or myelodysplastic syndrome: a Childrens Cancer Group pilot study. J Clin Oncol 1993;11(8):1448–1457.

    CAS  PubMed  Google Scholar 

  163. de Botton S, Coiteux V, Chevret S, et al. Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. J Clin Oncol 2004;22(8):1404–1412.

    PubMed  Google Scholar 

  164. Tallman MS, Rowlings PA, Milone G, et al. Effect of post-remission chemotherapy before human leukocyte antigen-identical sibling transplantation for acute myelogenous leukemia in first complete remission. Blood 2000;96(4):1254–1258.

    CAS  PubMed  Google Scholar 

  165. Aplenc R, Alonzo TA, Gerbing BR, et al. Ethinicity and survival in childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Blood 2006;108(1):74–80.

    CAS  PubMed  Google Scholar 

  166. Ravindranath Y, Yeager AM, Chang MN, et al. Autologous bone marrow transplantation vs intensive consolidation chemotherapy for acute myeloid leukemia in childhood. Pediatric Oncology Group. N Engl J Med 1996;334(22):1428–1434.

    CAS  PubMed  Google Scholar 

  167. Chen AR, Alonzo TA, Woods WG, Arceci RJ. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?—an American view. Br J Haematol 2002; 118(2):378–384.

    PubMed  Google Scholar 

  168. Burnett AK, Wheatley K, Goldstone AH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol 2002;118(2):385–400.

    PubMed  Google Scholar 

  169. Gibson BE, Webb D, Wheatley K. Does transplant in first CR have a role in pediatric AML? A review of the MRC10 and 12 trials Blood 2000;96:522a.

    Google Scholar 

  170. Creutzig U, Reinhardt D. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?—a European view. Br J Haematol 2002;118(2):365–377.

    PubMed  Google Scholar 

  171. Cahn JY, Labopin M, Sierra J, et al. No impact of high-dose cytarabine on the outcome of patients transplanted for acute myeloblastic leukaemia in first remission. Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 2000;110(2):308–314.

    CAS  PubMed  Google Scholar 

  172. Mrozek K, Heinonen K, de la Chapelle A, Bloomfield CD. Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol 1997;24(1):17–31.

    CAS  PubMed  Google Scholar 

  173. Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol 1999;107(1):69–79.

    CAS  PubMed  Google Scholar 

  174. Hasle H, Arico M, Basso G, et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia 1999;13(3):376–385.

    CAS  PubMed  Google Scholar 

  175. Ravindranath Y, Chang M, Steuber CP, et al. Pediatric Oncology Group (POG) studies of acute myeloid leukemia (AML): a review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia 2005;19(12):2101–2116.

    CAS  PubMed  Google Scholar 

  176. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998;92(7):2322–2333.

    CAS  PubMed  Google Scholar 

  177. Smith FO, Alonzo TA, Gerbing RB, Woods WG, Arceci RJ. Long-term results of children with acute myeloid leukemia: a report of three consecutive Phase III trials by the Children’s Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia 2005;19(12):2054–2062.

    CAS  PubMed  Google Scholar 

  178. Creutzig U, Zimmermann M, Ritter J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005;19(12):2030–2042.

    CAS  PubMed  Google Scholar 

  179. Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 1999;94(11):3707–3716.

    CAS  PubMed  Google Scholar 

  180. Alonzo TA, Wells RJ, Woods WG, et al. Post-remission therapy for children with acute myeloid leukemia: the children’s cancer group experience in the transplant era. Leukemia 2005;19(6):965–970.

    CAS  PubMed  Google Scholar 

  181. Arceci RJ, Burnett A, Estey E, Hills R, Woods WG. Acute myelogenous leukemia in adolescents and young adults: Who should treat? Am Soc Clin Oncol 2006;533-542.

    Google Scholar 

  182. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93(9):3074–3080.

    CAS  PubMed  Google Scholar 

  183. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97(1):89–94.

    CAS  PubMed  Google Scholar 

  184. Kondo M, Horibe K, Takahashi Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999;33(6):525–529.

    CAS  PubMed  Google Scholar 

  185. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99(12):4326–4335.

    CAS  PubMed  Google Scholar 

  186. Kottaridis PD, Gale RE, Linch DC. Prognostic implications of the presence of FLT3 mutations in patients with acute myeloid leukemia. Leuk Lymphoma 2003;44(6):905–913.

    CAS  PubMed  Google Scholar 

  187. Meshinchi S, Alonzo T, Gerbing R, Stirewalt D, Lange B, Radich J. Clinical significance of FLT3 internal tandem duplication in pediatric AML, a CCG 2961 study. Blood 2003;102:98a.

    Google Scholar 

  188. Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003;102(7):2387–2394.

    CAS  PubMed  Google Scholar 

  189. Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003;17:17.

    Google Scholar 

  190. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97(8):2434–2439.

    CAS  PubMed  Google Scholar 

  191. Lacayo NJ, Meshinchi S, Kinnunen P, et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004;104(9):2646–2654.

    CAS  PubMed  Google Scholar 

  192. Meshinchi S, Arceci RJ, Sanders JE, et al. Role of allogeneic stem cell transplantation in FLT3/ITD-positive AML. Blood 2006;108(1):400–401.

    CAS  PubMed  Google Scholar 

  193. Chou WC, Tang JL, Lin LI, et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the agedependent incidences and the stability during disease evolution. Cancer Res 2006;66(6):3310–3316.

    CAS  PubMed  Google Scholar 

  194. Alcalay M, Tiacci E, Bergomas R, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005;106(3):899–902.

    CAS  PubMed  Google Scholar 

  195. Grisendi S, Pandolfi PP. NPM mutations in acute myelogenous leukemia. N Engl J Med 2005;352(3): 291–292.

    CAS  PubMed  Google Scholar 

  196. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352(3):254–266.

    CAS  PubMed  Google Scholar 

  197. Schnittger, S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005;106(12):3733–3739.

    CAS  PubMed  Google Scholar 

  198. Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006;107(10):4011–4020.

    CAS  PubMed  Google Scholar 

  199. Cazzaniga G, Dell’Oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005;106(4):1419–1422.

    CAS  PubMed  Google Scholar 

  200. Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006;107(5):1806–1809.

    CAS  PubMed  Google Scholar 

  201. Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006;107(5):1791–1799.

    CAS  PubMed  Google Scholar 

  202. Cairoli R, Beghini A, Grillo G, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006;107(9):3463–3468.

    CAS  PubMed  Google Scholar 

  203. San Miguel J, Martinez A, Macedo A, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997;90:2465.

    CAS  PubMed  Google Scholar 

  204. Sievers EL, Lange BJ, Alonzo TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003;101(9):3398–3406.

    CAS  PubMed  Google Scholar 

  205. Jaeger U, Kainz B. Monitoring minimal residual disease in AML: the right time for real time. Ann Hematol 2003;82(3):139–147.

    CAS  PubMed  Google Scholar 

  206. Nagler A, Condiotti R, Rabinowitz R, Schlesinger M, Nguyen M, Terstappen LW. Detection of minimal residual disease (MRD) after bone marrow transplantation (BMT) by multi-parameter flow cytometry (MPFC). Med Oncol 1999;16(3):177–187.

    CAS  PubMed  Google Scholar 

  207. Lee S, Kim YJ, Eom KS, et al. The significance of minimal residual disease kinetics in adults with newly diagnosed PML-RARalpha-positive acute promyelocytic leukemia: results of a prospective trial. Haematologica 2006;91(5):671–674.

    CAS  PubMed  Google Scholar 

  208. Lo-Coco F, Breccia M, Diverio D. The importance of molecular monitoring in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003;16(3):503–520.

    CAS  PubMed  Google Scholar 

  209. Grimwade D. The significance of minimal residual disease in patients with t(15;17). Best Pract Res Clin Haematol 2002;15(1):137–158.

    CAS  PubMed  Google Scholar 

  210. Krejci O, van der Velden VH, Bader P, et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant 2003;32(8):849–851.

    CAS  PubMed  Google Scholar 

  211. Nemecek ER, Gooley TA, Woolfrey AE, Carpenter PA, Matthews DC, Sanders JE. Outcome of allogeneic bone marrow transplantation for children with advanced acute myeloid leukemia. Bone Marrow Transplant 2004;34(9):799–806.

    CAS  PubMed  Google Scholar 

  212. Sierra J, Storer B, Hansen JA, et al. Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: the effect of leukemic burden, donor HLA-matching, and marrow cell dose. Blood 1997;89(11):4226–4235.

    CAS  PubMed  Google Scholar 

  213. Robin M, Guardiola P, Dombret H, et al. Allogeneic bone marrow transplantation for acute myeloblastic leukaemia in remission: risk factors for long-term morbidity and mortality. Bone Marrow Transplant 2003;31(10):877–887.

    CAS  PubMed  Google Scholar 

  214. Laane E, Derolf AR, Bjorklund E, et al. The effect of allogeneic stem cell transplantation on outcome in younger acute myeloid leukemia patients with minimal residual disease detected by flow cytometry at the end of post-remission chemotherapy. Haematologica 2006;91(6):833–836.

    PubMed  Google Scholar 

  215. Leung W, Hudson MM, Strickland DK, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 2000;18(18):3273–3279.

    CAS  PubMed  Google Scholar 

  216. Michel G, Socie G, Gebhard F, et al. Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation—a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 1997;15(6):2238–2246.

    CAS  PubMed  Google Scholar 

  217. Leahey AM, Teunissen H, Friedman DL, Moshang T, Lange BJ, Meadows AT. Late effects of chemotherapy compared to bone marrow transplantation in the treatment of pediatric acute myeloid leukemia and myelodysplasia. Med Pediatr Oncol 1999;32(3):163–169.

    CAS  PubMed  Google Scholar 

  218. Parsons SK, Gelber S, Cole BF, et al. Quality-adjusted survival after treatment for acute myeloid leukemia in childhood: a Q-TWiST analysis of the Pediatric Oncology Group Study 8821. J Clin Oncol 1999; 17(7):2144–2152.

    CAS  PubMed  Google Scholar 

  219. Watson M, Wheatley K, Harrison GA, et al. Severe adverse impact on sexual functioning and fertility of bone marrow transplantation, either allogeneic or autologous, compared with consolidation chemotherapy alone: analysis of the MRC AML 10 trial. Cancer 1999;86(7):1231–1239.

    CAS  PubMed  Google Scholar 

  220. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicintreated children with acute lymphoblastic leukemia. N Engl J Med 2004;351(2):145–153.

    CAS  PubMed  Google Scholar 

  221. Estey EH. Treatment options for relapsed acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003;16(3):521–534.

    CAS  PubMed  Google Scholar 

  222. Estey EH, Giles FJ, Beran M, et al. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002;99(11):4222–4224.

    CAS  PubMed  Google Scholar 

  223. Woolson RF, Lachenbruch PA. Rank analysis of covariance with right-censored data. Biometrics 1983; 39(3):727–733.

    CAS  PubMed  Google Scholar 

  224. Ellenberg SS, Eisenberger MA. An efficient design for phase III studies of combination chemotherapies. Cancer Treat Rep 1985;69(10):1147–1154.

    CAS  PubMed  Google Scholar 

  225. Simon R, Thall PF, Ellenberg SS. New designs for the selection of treatments to be tested in randomized clinical trials. Stat Med 1994;13(5–7):417–429.

    CAS  PubMed  Google Scholar 

  226. Herson J, Carter SK. Calibrated phase II clinical trials in oncology. Stat Med 1986;5(5):441–447.

    CAS  PubMed  Google Scholar 

  227. Rubinstein LV, Korn EL, Freidlin B, Hunsberger S, Ivy SP, Smith MA. Design issues of randomized phase II trials and a proposal for phase II screening trials. J Clin Oncol 2005;23(28):7199–7206.

    PubMed  Google Scholar 

  228. Estey EH. New designs for phase II trials: application to a trial of targeted therapies vs. chemotherapy in patients age >60 with AML/high-risk MDS. Ann Hematol 2004;83 (suppl 1):S94–96.

    Google Scholar 

  229. Estey EH, Thall PF. New designs for phase 2 clinical trials. Blood 2003;102(2):442–448.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Arceci, R.J. (2007). Treatment, Outcomes, and Challenges of Newly Diagnosed AML in Children and Adolescents. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics