Skip to main content

FLT3: A Prototype Receptor Tyrosine Kinase Target in AML

  • Chapter
Acute Myelogenous Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1183 Accesses

Abstract

The receptor tyrosine kinase FLT3 is an important regulatory molecule in hematopoiesis and is expressed on the blasts in most cases of acute leukemia. Activating mutations of this receptor are present in roughly 30% of acute myeloid leukemia (AML) patients and are associated with a distinctly worse clinical outcome. Efforts to target this mutation and improve outcomes in this subgroup of AML patients have led to the investigation of several novel small-molecule FLT3 tyrosine kinase inhibitors. These compounds derive from a wide variety of chemical classes and differ significantly in both their potency and selectivity. this review summarizes the data validating FLT3 as a therapeutic target in AML and reviews the results of preliminary clinical trials using these agents for the treatment of AML patients harboring FLT3 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemiaspecific P210 protein is the product of the bcr/abl hybrid gene. Science 1986;233(4760):212–214.

    CAS  PubMed  Google Scholar 

  2. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hyperosinophilic syndrome. N Engl J Med 2003;348(13):1201–1214.

    CAS  PubMed  Google Scholar 

  3. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779–1790.

    CAS  PubMed  Google Scholar 

  4. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387–397.

    CAS  PubMed  Google Scholar 

  5. James C, Ugo V, Le Couedic JP, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434(7037):1144–1148.

    CAS  PubMed  Google Scholar 

  6. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344(14):1031–1037.

    CAS  PubMed  Google Scholar 

  7. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993;9(4):138–141.

    CAS  PubMed  Google Scholar 

  8. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347(7):472–480.

    CAS  PubMed  Google Scholar 

  9. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefinitib. N Engl J Med 2004;350(21):2129–2139.

    CAS  PubMed  Google Scholar 

  10. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235(4785):177–182.

    CAS  PubMed  Google Scholar 

  11. Hortobagyi GN. Overview of treatment results with trastuzumab (Herceptin) in metastatic breast cancer. Semin Oncol 2001;28(6 suppl 18):43–47.

    CAS  PubMed  Google Scholar 

  12. Nowell P, Hungerford D. Chromosome Studies on Normal and Leukemic Human Leukocytes. J Natl Cancer Inst 1960;25:85–109.

    CAS  PubMed  Google Scholar 

  13. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukeemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243(5405):290–293.

    CAS  PubMed  Google Scholar 

  14. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusions of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77(2):307–316.

    CAS  PubMed  Google Scholar 

  15. van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994;10:251–337.

    PubMed  Google Scholar 

  16. Hubbard SR. Theme and variations: juxtamembrane regulation of receptor protein kinases. Mol Cell 2001; 8(3):481–482.

    CAS  PubMed  Google Scholar 

  17. Jeffers M, Schmidt L, Nakaigawa N, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 1997;94(21):11,445–11,450.

    CAS  PubMed  Google Scholar 

  18. Furitsu T, Tsujimura T, Tono T, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993;92(4):1736–1744.

    CAS  PubMed  Google Scholar 

  19. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97(8):2434–2439.

    CAS  PubMed  Google Scholar 

  20. Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003;125(3):660–667.

    CAS  PubMed  Google Scholar 

  21. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 2001;106(6): 745–757.

    CAS  PubMed  Google Scholar 

  22. Griffith J, Black J, Faerman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004;13(2):169–178.

    CAS  PubMed  Google Scholar 

  23. Antonescu CR, Sommer G, Sarran L, et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and Clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 2003;9(9):3329–3337.

    CAS  PubMed  Google Scholar 

  24. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100(5): 1532–1542.

    CAS  PubMed  Google Scholar 

  25. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia 2003;17(9):1738–1752.

    CAS  PubMed  Google Scholar 

  26. Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267(5196):381–383.

    CAS  PubMed  Google Scholar 

  27. Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000;156(3):791–795.

    CAS  PubMed  Google Scholar 

  28. Frost MJ, Ferrao PT, Hughes TP, Ashman LK. Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther 2002;1(12):1115–1124.

    CAS  PubMed  Google Scholar 

  29. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J. Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003;102(2):646–651.

    CAS  PubMed  Google Scholar 

  30. Rosnet O, Schiff C, Pebusque MJ, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993;82(4):1110–1119.

    CAS  PubMed  Google Scholar 

  31. Small D, Levenstein M, Kim E, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994;91(2):459–463.

    CAS  PubMed  Google Scholar 

  32. Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol 1993;13(10): 6572–6585.

    CAS  PubMed  Google Scholar 

  33. Rosnet O, Buhring HJ, deLapeyriere O, et al. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol 1996;95(3–4):218–223.

    CAS  PubMed  Google Scholar 

  34. Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia 1998;12(3):301–310.

    CAS  PubMed  Google Scholar 

  35. Lavagna-Sevenier C, Marchetto S, Birnbaum D, Rosnet O. The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. J Biol Chem 1998;273(24):14,962–14,967.

    CAS  PubMed  Google Scholar 

  36. Zhang S, Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol 1999;65(3):372–380.

    CAS  PubMed  Google Scholar 

  37. Marchetto S, Fournier E, Beslu N, et al. SHC and SHIP phosphorylation and interaction in response to activation of the FLT3 receptor. Leukemia 1999;13(9):1374–1382.

    CAS  PubMed  Google Scholar 

  38. Zhang S, Fukuda S, Lee Y, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med 2000;192(5):719–728.

    CAS  PubMed  Google Scholar 

  39. Hannum C, Culpepper J, Campbell D, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994;368(6472):643–648.

    CAS  PubMed  Google Scholar 

  40. Lyman SD, James L, Johnson L, et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994;83(10):2795–2801.

    CAS  PubMed  Google Scholar 

  41. Gotze KS, Ramirez M, Tabor K, Small D, Matthews W, Civin CI. Flt3high and Flt3low CD34+ progenitor cells isolated from human bone marrow are functionally distinct. Blood 1998;91(6):1947–1958.

    CAS  PubMed  Google Scholar 

  42. Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of flt3(+) lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005; 121(2):295–306.

    CAS  PubMed  Google Scholar 

  43. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995;3(1):147–161.

    CAS  PubMed  Google Scholar 

  44. McKenna HJ, Stocking KL, Miller RE, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000;95(11):3489–3497.

    CAS  PubMed  Google Scholar 

  45. Ray RJ, Paige CJ, Furlonger C, Lyman SD, Rottapel R. Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur J Immunol 1996;26(7):1504–1510.

    CAS  PubMed  Google Scholar 

  46. Veiby OP, Jacobsen FW, Cui L, Lyman SD, Jacobsen SE. The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J Immunol 1996;157(7):2953–2960.

    CAS  PubMed  Google Scholar 

  47. Broxmeyer HE, Lu L, Cooper S, Ruggieri L, Li ZH, Lyman SD. Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp Hematol 1995;23(10):1121–1129.

    CAS  PubMed  Google Scholar 

  48. Hirayama F, Lyman SD, Clark SC, Ogawa M. The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 1995;85(7):1762–1768.

    CAS  PubMed  Google Scholar 

  49. Nicholls SE, Winter S, Mottram R, Miyan JA, Whetton AD. Flt3 ligand can promote survival and macrophage development without proliferation in myeloid progenitor cells. Exp Hematol 1999;27(4):663–672.

    CAS  PubMed  Google Scholar 

  50. Sitnicka E, Buza-Vidas N, Larsson S, Nygren JM, Liuba K, Jacobsen SE. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood 2003;102(3):881–886.

    CAS  PubMed  Google Scholar 

  51. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996;10(12):1911–1918.

    CAS  PubMed  Google Scholar 

  52. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001;113(4):983–988.

    CAS  PubMed  Google Scholar 

  53. Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998;12(9):1333–1337.

    CAS  PubMed  Google Scholar 

  54. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002;21(16):2555–2563.

    CAS  PubMed  Google Scholar 

  55. Nagata H, Worobec AS, Oh CK, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995;92(23):10,560–10,564.

    CAS  PubMed  Google Scholar 

  56. Till JH, Ablooglu AJ, Frankel M, Bishop SM, Kohanski RA, Hubbard SR. Crystallographic and solution studies of an activation loop mutant of the insulin receptor tyrosine kinase: insights into kinase mechanism. J Biol Chem 2001;276(13):10,049–10,055.

    CAS  PubMed  Google Scholar 

  57. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93(9):3074–3080.

    CAS  PubMed  Google Scholar 

  58. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000;14(4):675–683.

    CAS  PubMed  Google Scholar 

  59. Abu-Duhier FM, Goodeve AC, Wilson GA, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000;111(1):190–195.

    CAS  PubMed  Google Scholar 

  60. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001;97(11):3589–3595.

    CAS  PubMed  Google Scholar 

  61. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98(6):1752–1759.

    CAS  PubMed  Google Scholar 

  62. Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001;61(19):7233–7239.

    CAS  PubMed  Google Scholar 

  63. Iwai T, Yokota S, Nakao M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13(1):38–43.

    CAS  PubMed  Google Scholar 

  64. Xu F, Taki T, Yang HW, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 1999;105(1):155–162.

    CAS  PubMed  Google Scholar 

  65. Kondo M, Horibe K, Takahashi Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999;33(6):525–529.

    CAS  PubMed  Google Scholar 

  66. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97(1):89–94.

    CAS  PubMed  Google Scholar 

  67. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99(12):4326–4335.

    CAS  PubMed  Google Scholar 

  68. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100(1):59–66.

    CAS  PubMed  Google Scholar 

  69. Boissel N, Cayuela JM, Preudhomme C, et al. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy. Leukemia 2002;16(9):1699–1704.

    CAS  PubMed  Google Scholar 

  70. Mizuki M, Fenski R, Halfter H, et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000;96(12):3907–3914.

    CAS  PubMed  Google Scholar 

  71. Mizuki M, Schwable J, Steur C, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003;101(8):3164–3173.

    CAS  PubMed  Google Scholar 

  72. Scheijen B, Ngo HT, Kang H, Griffin JD. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004;23(19):3338–3349.

    CAS  PubMed  Google Scholar 

  73. Choudhary C, Schwable J, Brandts C, et al. AML-associated Flt3 kinase domain mutations show signal transduction differences in comparison to Flt3 ITD mutations. Blood 2005.

    Google Scholar 

  74. Kim KT, Baird K, Ahn JY, et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005;105(4):1759–1767.

    CAS  PubMed  Google Scholar 

  75. Tickenbrock L, Schwable J, Wiedehage M, et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005;105(9):3699–3706.

    CAS  PubMed  Google Scholar 

  76. Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBP {alpha} expression. Blood 2004;103(5):1883–1890.

    CAS  PubMed  Google Scholar 

  77. Murphy KM, Levis M, Hafez MJ, et al. Detection of FLT3 Internal Tandem Duplication and D835 Mutations by a Multiplex Polymerase Chain Reaction and Capillary Electrophoresis Assay. J Mol Diagn 2003;5(2):96–102.

    CAS  PubMed  Google Scholar 

  78. Kiyoi H, Naoe T, Yokota S, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11(9):1447–1452.

    CAS  PubMed  Google Scholar 

  79. Arrigoni P, Beretta C, Silvestri D, et al. FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol 2003;120(1):89–92.

    CAS  PubMed  Google Scholar 

  80. Noguera NI, Breccia M, Divona M, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 2002;16(11):2185–2189.

    CAS  PubMed  Google Scholar 

  81. Shih LY, Kuo MC, Liang DC, et al. Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer 2003;98(6):1206–1216.

    CAS  PubMed  Google Scholar 

  82. Schlenk RF, Germing U, Hartmann F, et al. High-dose cytarabine and mitoxantrone in consolidation therapy for acute promyelocytic leukemia. Leukemia 2005.

    Google Scholar 

  83. Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ. Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol 2004;122(3):348–358.

    CAS  PubMed  Google Scholar 

  84. Blair A, Hogge DE, Sutherland HJ. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood 1998;92(11):4325–4335.

    CAS  PubMed  Google Scholar 

  85. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730–737.

    CAS  PubMed  Google Scholar 

  86. Meierhoff G, Dehmel U, Gruss HJ, et al. Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia 1995;9(8):1368–1372.

    CAS  PubMed  Google Scholar 

  87. Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996;10(4):588–599.

    CAS  PubMed  Google Scholar 

  88. Carow CE, Levenstein M, Kaufmann SH, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996;87(3):1089–1096.

    CAS  PubMed  Google Scholar 

  89. Birg F, Courcoul M, Rosnet O, et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992;80(10):2584–2593.

    CAS  PubMed  Google Scholar 

  90. Rosnet O, Buhring HJ, Marchetto S, et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996;10(2):238–248.

    CAS  PubMed  Google Scholar 

  91. Levis M, Murphy KM, Pham R, et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 2005.

    Google Scholar 

  92. Nakano Y, Kiyoi H, Miyawaki S, et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol 1999;104(4):659–664.

    CAS  PubMed  Google Scholar 

  93. Kottaridis PD, Gale RE, Langabeer SE, Frw ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection and possible therapy with FLT3 inhibitors. Blood 2002;100(7):2393–2398.

    CAS  PubMed  Google Scholar 

  94. Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002;100(7):2387–2392.

    CAS  PubMed  Google Scholar 

  95. Tiesmeier J, Muller-Tidow C, Westermann A, et al. Evolution of FLT3-ITD and D835 activating point mutations in relapsing acute myeloid leukemia and response to salvage therapy. Leuk Res 2004;28(10):1069–1074.

    CAS  PubMed  Google Scholar 

  96. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5(7):738–743.

    CAS  PubMed  Google Scholar 

  97. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001;344(14):1038–1042.

    CAS  PubMed  Google Scholar 

  98. Levis M, Small D. Small molecule FLT3 tyrosine kinase inhibitors. Curr Pharm Des 2004;10(11): 1183–1193.

    CAS  PubMed  Google Scholar 

  99. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol 1999;285(2):713–725.

    CAS  PubMed  Google Scholar 

  100. Bohmer FD, Karagyozov L, Uecker A, et al. A single amino acid exchange inverts susceptibility of related receptor tyrosine kinases for the ATP site inhibitor STI-571. J Biol Chem 2003;278(7):5148–5155.

    PubMed  Google Scholar 

  101. Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002;62(15):4236–4243.

    CAS  PubMed  Google Scholar 

  102. Levis M, Tse KF, Smith BD, Garrett E, Small D. A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood 2001;98(3):885–887.

    CAS  PubMed  Google Scholar 

  103. Levis M, Allebach J, Tse KF, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002;99(11):3885–3891.

    CAS  PubMed  Google Scholar 

  104. Brown P, Meshinchi S, Levis M, et al. Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood 2004;104(6):1841–1849.

    CAS  PubMed  Google Scholar 

  105. Ozeki K, Kiyoi H, Hirose Y, et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004;103(5):1901–1908.

    CAS  PubMed  Google Scholar 

  106. Fiedler W, Mesters R, Tinnefeld H, et al. A phase II clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003.

    Google Scholar 

  107. Giles FJ, Cooper MA, Silverman L, et al. Phase II study of SU5416—a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor—in patients with refractory myeloproliferative diseases. Cancer 2003;97(8):1920–1928.

    CAS  PubMed  Google Scholar 

  108. O’Farrell AM, Yuen HA, Smolich B, et al. Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 2004;28(7):679–689.

    PubMed  Google Scholar 

  109. O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003;9(15):5465–5476.

    PubMed  Google Scholar 

  110. Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105(3):986–993.

    CAS  PubMed  Google Scholar 

  111. Yee KW, Schittenhelm M, O’Farrell AM, et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood 2004;104(13):4202–4209.

    CAS  PubMed  Google Scholar 

  112. George DJ, Dionne CA, Jani J, et al. Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 1999;59(10):2395–2401.

    CAS  PubMed  Google Scholar 

  113. Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103(10):3669–3676.

    CAS  PubMed  Google Scholar 

  114. Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004;104(4):1145–1150.

    CAS  PubMed  Google Scholar 

  115. Weisberg E, Boulton C, Kelly LM, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002;1(5):433–443.

    CAS  PubMed  Google Scholar 

  116. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105(1):54–60.

    CAS  PubMed  Google Scholar 

  117. Giles F, Schiffer C, Kantarjian H, et al. Phase 1 study, of PKC412, an oral FLT3 kinase inhibitor, in sequential and xoncomitant xombinations with daunorubicin and cytarabine (DA) induction and high-dose cytarabine (HDAra-C) consolidation in newly diagnosed patients with AML. Blood 2004;104:262a.

    Google Scholar 

  118. Kelly LM, Yu JC, Boulton CL, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002;1(5):421–432.

    CAS  PubMed  Google Scholar 

  119. Pandey A, Volkots DL, Seroogy JM, et al. Identification of orally active, potent, and selective 4-piper-azinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family. J Med Chem 2002;45(17):3772–3793.

    CAS  PubMed  Google Scholar 

  120. De Angelo D, Stone R, Heaney M, et al. Phase II evaluation of the tyrosine kinase inhibitor MLN518 in patients with acute myeloid leukemia (AML) bearing a FLT3 internal tandem duplication (ITD) mutation. Blood 2004;104(11):496a.

    Google Scholar 

  121. Clark JJ, Cools J, Curley DP, et al. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 2004;104(9):2867–2872.

    CAS  PubMed  Google Scholar 

  122. Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005;105(7):2941–2948.

    CAS  PubMed  Google Scholar 

  123. Griswold IJ, Shen LJ, La Rosee P, et al. Effects of MLN518, a dual FLT3 and KIT inhibitor, on normal and malignant hematopoiesis. Blood 2004;104(9):2912–2918.

    CAS  PubMed  Google Scholar 

  124. Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2(2):117–125.

    CAS  PubMed  Google Scholar 

  125. Bagrintseva K, Schwab R, Kohl TM, et al. Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 2004;103(6):2266–2275.

    CAS  PubMed  Google Scholar 

  126. Cools J, Mentens N, Furet P, et al. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004;64(18):6385–6389.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Levis, M. (2007). FLT3: A Prototype Receptor Tyrosine Kinase Target in AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics