Skip to main content

Emerging Therapeutics for AML

  • Chapter
  • 1168 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

Emerging therapeutics for acute myeloid leukemia (AML) have evolved from disparate sources. In addition to oncogene, epigenetic, or cytokine pathway-directed therapies (discussed in other chapters), recent research has defined an eclectic collection of novel opportunities in leukemia treatment. These derive variously from natural products, including aplidine and triterpenoids; synthetic chemicals such as adaphostin; and biologicals such as antibody-directed therapeutics. This chapter will endeavor to summarize the state of preclinical and clinical development of these treatments and to define emerging trends in leukemia directed developmental therapeutics. Strategies to modulate resistance, either intrinsic or acquired, are of continued importance; however, strategies to evoke leukemic cell “stress” by perturbing signaling pathways are of great interest to explore further. Likely progress in the latter goal will be achieved by defining combinations of novel targeted agents. These are envisioned to allow modulation of cytotoxicity evoked not only by classical agents, but also by affecting critical pathways activated during leukemogenesis to sustain the leukemic cell’s survival. These approaches will, it is hoped, augment the success of, or provide totally new, strategies to achieve response and improve survival of patients with AML.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub TR. Genomic approaches to the pathogenesis of hematologic malignancy. Curr Opin Hematol 2001;8:252–261.

    Article  CAS  PubMed  Google Scholar 

  2. Gutierrez NC, Lopez Perez R, Hernandez JM, et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 2005;19:402–409.

    Article  CAS  PubMed  Google Scholar 

  3. Tallman MS. Acute promyelocytic leukemia as a paradigm for targeted therapy. Semin Hematol 2004; 41(2 suppl 4):27–32.

    Article  CAS  PubMed  Google Scholar 

  4. Sternberg DW, Gilliland DG. The role of signal transducer and activator of transcription factors in leukemogenesis. J Clin Oncol 2004;22:361–371.

    Article  CAS  PubMed  Google Scholar 

  5. Konopleva M, Zhao S, Hu W, et al. The anti-apoptotic genes bcl-x(L) and bcl-2 are over expressed and contribute to chemoresistance of non-proliferating leukaemic CD 34+ cells. Br J Hematol 2002;18:521–534.

    Article  Google Scholar 

  6. Invernizzi R, Travaglino E, Lunghi M, et al. Survivin expression in acute leukemias and myelodysplastic syndromes. Leuk Lymphoma 2004;45:2229–2237.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro GI. Preclinical and clinical development of the cyclin depenent kinase inhibitor flavopiridol. Clin Cancer Res 2004;10:4270s–4275s.

    Article  CAS  PubMed  Google Scholar 

  8. Sausville EA. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med 2002;8(4 suppl):S32–S37.

    Article  CAS  PubMed  Google Scholar 

  9. Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood 1998;91:2482–2490.

    CAS  PubMed  Google Scholar 

  10. Cartee L, Wang Z, Decker RH, et al. The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDK1 expression while enhancing apoptosis in human myeloid leukemia cells. Cancer Res 2001;61:2583–2591.

    CAS  PubMed  Google Scholar 

  11. Decker RH, Wang S, Dai Y, Dent P, Grant S. Loss of bcl-2 phosphorylation loop domain is required to protect human myeloid leukemia cells from flavopiridol-mediated mitochondrial damage and apoptosis. Cancer Biol Ther 2002;1:136–144.

    CAS  PubMed  Google Scholar 

  12. Nakanishi T, Karp JE, Tan M, et al. Quantitative analysis of breast cancer resistance; protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res 2003;9:3320–3328.

    CAS  PubMed  Google Scholar 

  13. Byrd JC, Peterson BL, Gabrilove J, et al. Cancer and Leukemia Group B. Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from Cancer and Leukemia Group B study 19805 Clin Cancer Res 2005;11:4176–4181.

    Article  CAS  PubMed  Google Scholar 

  14. Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA, Sausville EA. Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abl autokinase activity in K562 chronic myelogenous leukemia. Anticancer Drugs 1994;5:213–222.

    Article  CAS  PubMed  Google Scholar 

  15. Kaur G, Sausville EA. Altered physical state of p210bcr-abl in tyrphostin AG957-treated K562 cells. Anticancer Drugs 1996;7:815–824.

    Article  CAS  PubMed  Google Scholar 

  16. Losiewicz MD, Kaaur G, Sausville EA. Different early effects of tyrphostin AG957 and geldanamycins on mitogen-activated protein kinase and p120cbl phosphorylation in anti CD-3-stimulated T-lymphoblasts. Biochem Pharmacol 1999;57:281–289.

    Article  CAS  PubMed  Google Scholar 

  17. Kaur G, Narayanan VL, Risbood PA, et al. Synthesis structure-activity relationship, and p210(bcr-abl) protein tyrosine kinase activity of novel AG 957 analogs. Bioorg Med Chem 2005;13:1749–1761.

    Article  CAS  PubMed  Google Scholar 

  18. Svingen PA, Tefferi A, Kottke TJ, et al. Effects of the bcr/abl kinase inhibitors AG957 and NSC 680410 on chronic myelogenous leukemia cells in vitro. Clin Cancer Res 2000;6:237–249.

    CAS  PubMed  Google Scholar 

  19. Chandra J, Hackbarth J, Le S, et al. Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 2003;102:4512–4519.

    Article  CAS  PubMed  Google Scholar 

  20. Yu C, Rahmani M, Alemenara J, Sausville EA, Dent P, Grant S. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds though a RAF-1/MEK/ERK and AKT-dependent process. Oncogene 2004;23:1364–1376.

    Article  CAS  PubMed  Google Scholar 

  21. Hose C, Kaur G, Sausville EA, Monks A. Transcriptional profiling identifies altered intracellular labile iron homeostasis as a contributing factor to the toxicity of adaphostin: decreased VEGF secretion is independent of HIF-1 regulation. Clin Cancer Res 2005;11:6370–6381.

    Article  CAS  PubMed  Google Scholar 

  22. Recher C, Byene-Rauzy O, Demur C, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 2005;105:2527–2534.

    Article  CAS  PubMed  Google Scholar 

  23. Stadheim TA, Suh N, Ganju N, Sporn MB, Eastman A. The novel triterpenoid 2-cyano-3, 12-dioxooleana-1,9-dien-28-oic acid (CDDO) potently enhances apoptosis induced by tumor necrosis factor in human leukemia cells. J Biol Chem 2002;277:16,448–16,455.

    Article  CAS  PubMed  Google Scholar 

  24. Suh WS, Kim YS, Schimmer AD, et al. Synthetic trieterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL. Leukemia 2003;17:2122–2129.

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda T, Sporn M, Honda T, Gribble GW, Kufe D. The novel triterpenoids CDDO and its derivatives induce apoptosis by disruption of intracellular redox balance. Cancer Res 2003;63:5551–5558.

    CAS  PubMed  Google Scholar 

  26. Konopleva M, Tsao T, Estrov Z, et al. The synthetic triterpenoid 2-cyano, 3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and independent apoptosis in acute myelogenous leukemia. Cancer Res 2004;64:7927–7935.

    Article  CAS  PubMed  Google Scholar 

  27. Konopleva M, Contractor R, Kurina, SM, Chen W, Andreef M, Ruvolo PP. The novel triterpenoid CDDO-Me suppresses MAPK pathways and promotes p38 activation in acute myeloid leukemias cells. Leukemia 2005; 19:1350–1354.

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda T, Kimura F, Nakata Y, et al. Triterpenoid CDDO-Im downregulates PML/RARα. Cell Death Differ 2005;12:523–531.

    Article  CAS  PubMed  Google Scholar 

  29. Mix KS, Coon CI, Rosen ED, Suh N, Sporn MB, Brinckerhoff CE. Peroxisome proliferator activated receptor-gamma independent repression of collagenase gene expression by 2-cyano, 3,12-dioxooleana-1,9-dien-28-oic acid and prostaglandin 15-deoxy-delta(12,14) J2: role for SMAD signaling. Mol Pharmacol 2004;65:309–318.

    Article  CAS  PubMed  Google Scholar 

  30. Liby K, Hock T, Yore MM, et al. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res 2005;65:4789–4798.

    Article  CAS  PubMed  Google Scholar 

  31. Hail N Jr, Konopleva M, Sporn M, Lotan R, Andreeff M. Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano, 3,12-dioxooleana-1,9-dien-28-oic acid (CDDO). J Biol Chem 2004;279:11,179–11,187.

    Article  CAS  PubMed  Google Scholar 

  32. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 2003;23:165–172.

    Article  CAS  PubMed  Google Scholar 

  33. D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA 1994;91:3964–3968.

    Article  PubMed  Google Scholar 

  34. Gao N, Rahmani M, Dent P, Grant S. 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process. Oncogene 2005;24:3797–3809.

    Article  CAS  PubMed  Google Scholar 

  35. Biscardi M, Caporale R, Balestri F, Gavazzi S, Jimeno J, Grossi A. AEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann Oncol 2005;16:1667–1674.

    Article  CAS  PubMed  Google Scholar 

  36. Balanian L, Ball ED. Anti-CD33 monoclonal antibodies enhance the cytotoxic effects of cytosine arabinoside and idarubicin on acute myeloid leukemia cells through similarities in their signaling pathways. Exp Hematol 2005;33:199–211.

    Article  Google Scholar 

  37. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 2005;19:176–182.

    Article  CAS  PubMed  Google Scholar 

  38. Nabhan C, Rundhagen L, Jatoi M, et al. Gemtuzumab ozogamicin (MylotargTM) is infrequently associated with sinusoidal obstructive syndrome/veno-occlusive disease. Ann Oncol 2004;15:1231–1236

    Article  CAS  PubMed  Google Scholar 

  39. Marks AJ, Cooper MS, Anderson RJ, et al. Selective apoptotic killing of malignant hemopoetic cells by antibody-targeted delivery of an amphipathic peptide. Cancer Res 2005;65:2373–2377.

    Article  CAS  PubMed  Google Scholar 

  40. Chang F, Steelman LS, Lee JT, et al. Signal transduction mediated by the ras/raf/mek/erk pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003;17:1263–1293.

    Article  CAS  PubMed  Google Scholar 

  41. Santos SC, Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004;103:3883–3889.

    Article  CAS  PubMed  Google Scholar 

  42. Neben K, Schnittger S, Brors B, et al. Distinct gene expression patterns associated with FLT3-and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene 2005;24:1580–1588.

    Article  CAS  PubMed  Google Scholar 

  43. Bieker R, Padro T, Kramer J, et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003;63:7241–7246.

    CAS  PubMed  Google Scholar 

  44. Decker S, Sausville EA. Pre-clinical modeling of combination treatments: fantasy or requirement. Ann NY Acad Sci 2005;1059:61–69.

    Article  CAS  PubMed  Google Scholar 

  45. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  46. Wang S, Vrana JA, Bartimole TM, et al. Agents that down-regulate or inhibit protein kinase C circumvent resistance to 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress bcl-2. Mol Pharmacol 1997;52:1000–1009.

    CAS  PubMed  Google Scholar 

  47. Cartee L, Maggio SC, Smith R, Sankala HM, Dent P, Grant S. Protein kinase C-dependent activation of the tumor necrosis factor receptor-mediated extrinsic death pathway underlies enhanced apoptosis in human myeloid leukemia cells exposed to bryostatin-1 and flavopiridol. Mol Cancer Ther 2003;2:83–93.

    CAS  PubMed  Google Scholar 

  48. Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK-and NF-kappaB-dependent process. Oncogene 2003;22:7108–7122.

    Article  CAS  PubMed  Google Scholar 

  49. Seynaeve CM, Kazianetz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994;45:1207–1214.

    CAS  PubMed  Google Scholar 

  50. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000;275:5600–5605.

    Article  CAS  PubMed  Google Scholar 

  51. Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 2000;60:2108–2112.

    CAS  PubMed  Google Scholar 

  52. Yu Q, La Rose J, Zhang H, Takemura H, Kohn KW, Pommier Y. UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 2002;62:5743–5748.

    CAS  PubMed  Google Scholar 

  53. Sato S, Fujita N, Tsuruo T. Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002;21:1727–1738.

    Article  CAS  PubMed  Google Scholar 

  54. Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19:2319–2333.

    CAS  PubMed  Google Scholar 

  55. Kondapaka SB, Zarnowski M, Yver DR, Sausville EA, Cushman SW. 7-hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-stimulated glucose transport. Clin Cancer Res 2004;10:7192–7198.

    Article  CAS  PubMed  Google Scholar 

  56. Dai Y, Yu C, Singh V, et al. Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 2001;61:5106–5115.

    CAS  PubMed  Google Scholar 

  57. Dai Y, Rahmani M, Pei XY, et al. Farnesyltransferase inhibitors interact synergistically with the CHk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MED/ERK pathways and activation of SEK1/JNK. Blood 2005;105:1706–1716.

    Article  CAS  PubMed  Google Scholar 

  58. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003;102:972–980.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao S, Konopleva M, Cabreira-Hansen M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004;18:267–275.

    Article  CAS  PubMed  Google Scholar 

  60. Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S. Rapamycin and UCN-01 synergistically induce apoposis in human leukemia cells through a process that is regulated by the raf-1/mek/erk, akt, and jnk signal transduction pathways. Mol Cancer Ther 2005;4:457–470.

    CAS  PubMed  Google Scholar 

  61. Shao RG, Cao CX, Pommier Y. Activation of PKCalpha downstream from caspases during apoptosis induced by 7-hydroxystaurosporine or the topoisomerase inhibitors, camptothecin and etoposide, in human myeloid leukemia HL60 cells. J Biol Chem 1997;272:31,321–31,325.

    Article  CAS  PubMed  Google Scholar 

  62. Sampath D, Shi Z, Plunkett W. Inhibition of cyclin dependent kinase 2 by the chk1-cdc25A pathway during the S-phase checkpoint activated by fludarabine: dysregulation by 7-hydroxystaurosporine. Mol Pharmacol 2002;62:680–688.

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Wang Z, Grant S. Bryostatin 1 and UCN-01 potentiate 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human myeloid leukemia cells through disparate mechanisms. Mol Pharmacol 2003;63:232–242.

    Article  CAS  PubMed  Google Scholar 

  64. Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003;3:213–217.

    Article  CAS  PubMed  Google Scholar 

  65. Mesa RA, Loegering D, Powell HL, et al. Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 2005;106:318–327.

    Article  CAS  PubMed  Google Scholar 

  66. Melnick AM, Adelson K, Licht JD. The theoretical basis of transcriptional therapy of cancer: can it be put into practice? J Clin Oncol 2005;23:3957–3970.

    Article  PubMed  Google Scholar 

  67. Bhalla K. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 2005;23:3971–3993.

    Article  CAS  PubMed  Google Scholar 

  68. Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-{kappa}B activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 2005;25:5429–5444.

    Article  CAS  PubMed  Google Scholar 

  69. Maggio SC, Rosato RR, Kramer LB, et al. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 2004;64:2590–2600.

    Article  CAS  PubMed  Google Scholar 

  70. Kondapacka SB, Singh SS, Dasmahapatra GP, Sausville E, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003;2:1093–1103.

    Google Scholar 

  71. Rahmani M, Reese E, Dai Y, et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005;65:2422–2432.

    Article  CAS  PubMed  Google Scholar 

  72. Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005;280:26,729–26,734.

    Article  CAS  PubMed  Google Scholar 

  73. Wrzesien-Kus A, Robak T, Wierzbowska A, et al. A multicenter, open, non-comparative, Phase II study of the combination of cladribine (2-chlorodeoxyadenosine), cytarabine, granulocyte colony-stimulating factor and mitoxantrone as induction therapy in refractory acute myeloid leukemia: a report of the Polish adult leukemia group. Ann Hematol 2005;84:557–564.

    Article  CAS  PubMed  Google Scholar 

  74. Fiedler W, Mesters R, Tinnefeld H, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003;102:2763–2767.

    Article  CAS  PubMed  Google Scholar 

  75. Steins MB, Bieker R, Padro T, et al. Thalidomide for the treatment of acute myeloid leukemia. Leuk Lymphoma 2003;44:1489–1493.

    Article  CAS  PubMed  Google Scholar 

  76. Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004;10:3577–3585.

    Article  CAS  PubMed  Google Scholar 

  77. Orlowski RZ, Voorhees PM, Garcia RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2004;105:3058–3065.

    Article  PubMed  Google Scholar 

  78. Gerrard G, Payne E, Baker RJ, et al. Clinical effects and P-glycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin, and cytarabine. Haematologica 2004;89:782–790.

    CAS  PubMed  Google Scholar 

  79. Cragg LH, Andreeff M, Feldman E, et al. Phase I trial and correlative laboratory studies of bryostatin 1 (NSC 339555) and high-dose 1-B-D-arabinofuranosylcytosine in patients with refractory acute leukemia. Clin Cancer Res 2002;8:2123–2133.

    CAS  PubMed  Google Scholar 

  80. Bassan R, Chiodini B, Lerede T, et al. Prolonged administration of all-trans retinoic acid in combination with intensive chemotherapy and G-CSF for adult acute myelogenous leukemia: single-center pilot study in different risk groups. Hematol J 2002;3:193–200.

    Article  CAS  PubMed  Google Scholar 

  81. Deng X, Kornblau, SM, Ruvolo, PP, May, WS, Jr. Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monogr 2001;28:30–37.

    PubMed  Google Scholar 

  82. Marcucci G, Stock W, Dai G, et al. Phase I study of oblimersen sodium, an antisense to bcl2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005;23:3404–3411.

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Rayburn E, Zhang R. Synthetic oligodeoxynucleotides containing deoxycytidyl-deoxyguanosine dinucleotides (CpG ODNs) and modified analogs as novel anticancer therapeutics. Curr Pharm Des 2005;11:2889–2907.

    Article  CAS  PubMed  Google Scholar 

  84. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23:4110–4116.

    Article  CAS  PubMed  Google Scholar 

  85. Amadori S, Suciu S, Willemze R, et al. De Witte EORTC leukemia group; GIMEMA leukemia group. Sequential administration of gemtuzumab ozogamicin and conventional chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Haematologica 2004;89:950–956.

    CAS  PubMed  Google Scholar 

  86. Nabhan C, Rundhaugen LM, Riley MB, et al. Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leuk Res 2005;29:53–57.

    Article  CAS  PubMed  Google Scholar 

  87. Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin (Mylotarg®) in pediatric patients with advanced CD33-positive acute myeloid leukemia. Blood 2005;106:1183–1188.

    Article  CAS  PubMed  Google Scholar 

  88. Wu F, Oka Y, Tsuboi A, et al. Th1-biased humoral immune responses against Wilms tumor gene WT1 product in the patients with hematopoietic malignancies. Leukemia 2005;19:268–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sausville, E.A. (2007). Emerging Therapeutics for AML. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics