Skip to main content

Experimental Diabetic Autonomic Neuropathy

  • Chapter
  • 2030 Accesses

Part of the book series: Clinical Diabetes ((CLD))

Abstract

Experimental diabetic autonomic neuropathy (DAN) recapitulates the pattern of physiological and pathological changes seen in human DAN albeit in milder form. Impaired vasoregulation occurs early. Cardiovagal function is impaired in both spontaneous and induced DAN in rodents. Baroreflex gain is modestly impaired in the rabbit. Cardiac noradrenergic innervation is reduced in DAN. Splanchnic-mesenteric vasoregulation is reduced, ascribed to prejunctional impairment of neurotransmission and impaired endothelial function. Excessive venous pooling is associated with reduced density of 5-hydroxytrytamine and tyrosine hydroxylase labeling of splanchnic veins. Arterial norepinephrine is reduced in DAN. Structural changes affecting sympathetic neurons are well-established in rodent DAN of 1 year duration. Sudomotor denervation is present in diabetic mouse and rat. Erectile dysfunction regularly occurs, related to impaired nitric oxide synthase activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McManis PG, Low PA, Lagerlund TD. Nerve Blood Flow and Microenvironment, in Peripheral Neuropathy (Dyck PJ, Thomas PK, eds.), Elsevier Saunders, Philadelphia, 2005, pp. 667–680.

    Google Scholar 

  2. Kihara M, Low PA. Regulation of rat nerve blood flow: role of epineurial alpha-receptors. J Physiol 1990;422:145–152.

    PubMed  CAS  Google Scholar 

  3. Kihara M, Low PA. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. Exp Neurol 1995;132:180–185.

    Article  PubMed  CAS  Google Scholar 

  4. Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001;44:1973–1988.

    Article  PubMed  CAS  Google Scholar 

  5. Nagamatsu M, Nickander KK, Schmelzer JD, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 1995;18:1160–1167.

    Article  PubMed  CAS  Google Scholar 

  6. Keegan A, Cotter MA, Cameron NE. Effects of diabetes and treatment with the antioxidant alpha-lipoic acid on endothelial and neurogenic responses of corpus cavernosum in rats. Diabetologia 1999;42:343–350.

    Article  PubMed  CAS  Google Scholar 

  7. Low PA, Zimmerman BR, Dyck PJ. Comparison of distal sympathetic with vagal function in diabetic neuropathy. Muscle Nerve 1986;9:592–596.

    Article  PubMed  CAS  Google Scholar 

  8. Mesangeau D, Laude D, Elghozi JL. Early detection of cardiovascular autonomic neuropathy in diabetic pigs using blood pressure and heart rate variability. Cardiovasc Res 2000;45:889–899.

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto M, Harada T, Ishikawa T, Obata M, Shibutani Y. Investigation on diabetic autonomic neuropathy assessed by power spectral analysis of heart rate variability in WBN/Kob rats. J Electrocardiol 2001;34:243–250.

    Article  PubMed  CAS  Google Scholar 

  10. McDowell TS, Chapleau MW, Hajduczok G, Abboud FM. Baroreflex dysfunction in diabetes mellitus. I. Selective impairment of parasympathetic control of heart rate. Am J Physiol 1994;266:H235–H243.

    PubMed  CAS  Google Scholar 

  11. Patel KP, Zhang PL. Baroreflex function in streptozotocin (STZ) induced diabetic rats. Diabetes Res Clin Pract 1995;27:1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Gouty S, Regalia J, Helke CJ. Attenuation of the afferent limb of the baroreceptor reflex in streptozotocin-induced diabetic rats. Auton Neurosci 2001;89:86–95.

    Article  PubMed  CAS  Google Scholar 

  13. Gouty S, Regalia J, Cai F, Helke CJ. Alpha-lipoic acid treatment prevents the diabetesinduced attenuation of the afferent limb of the baroreceptor reflex in rats. Auton Neurosci 2003;108:32–44.

    Article  PubMed  CAS  Google Scholar 

  14. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603–608.

    Article  PubMed  CAS  Google Scholar 

  15. Togane Y. Evaluation of the cardiac autonomic nervous system in spontaneously noninsulin-dependent diabetic rats by 123I-metaiodobenzylguanidine imaging. Ann Nucl Med 1999;13:19–26.

    Article  PubMed  CAS  Google Scholar 

  16. Ralevic V, Belai A, Burnstock G. Effects of streptozotocin-diabetes on sympathetic nerve, endothelial and smooth muscle function in the rat mesenteric arterial bed. Eur J Pharmacol 1995;286:193–199.

    Article  PubMed  CAS  Google Scholar 

  17. Low PA, Walsh JC, Huang CY, McLeod JG. The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study. Brain 1975;98:341–356.

    Article  PubMed  CAS  Google Scholar 

  18. Webster GJ, Petch EW, Cowen T. Streptozotocin-induced diabetes in rats causes neuronal deficits in tyrosine hydroxylase and 5-hydroxytryptamine specific to mesenteric perivascular sympathetic nerves and without loss of nerve fibers. Exp Neurol 1991;113:53–62.

    Article  PubMed  CAS  Google Scholar 

  19. Cohen RA, Tesfamariam B, Weisbrod RM, Zitnay KM. Adrenergic denervation in rabbits with diabetes mellitus. Am J Physiol 1990;259:H55–H61.

    PubMed  CAS  Google Scholar 

  20. Schmidt RE, Scharp DW. Axonal dystrophy in experimental diabetic autonomic neuropathy. Diabetes 1982;31:761–770.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt RE, Modert CW, Yip HK, Johnson EM Jr. Retrograde axonal transport of intravenously administered 125I-nerve growth factor in rats with streptozotocin-induced diabetes. Diabetes 1983;32:654–663.

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt RE, Plurad SB, Sherman WR, Williamson JR, Tilton RG. Effects of aldose reductase inhibitor sorbinil on neuroaxonal dystrophy and levels of myo-inositol and sorbitol in sympathetic autonomic ganglia of streptozocin-induced diabetic rats. Diabetes 1989; 38:569–579.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt RE, Dorsey DA, Beaudet LN, Parvin CA, Zhang W, Sima AA. Experimental rat models of types 1 and 2 diabetes differ in sympathetic neuroaxonal dystrophy. J Neuropathol Exp Neurol 2004;63:450–460.

    PubMed  Google Scholar 

  24. Tominaga M, Maruyama H, Vasko MR, Baetens D, Orci L, Unger RH. Morphologic and functional changes in sympathetic nerve relationships with pancreatic alpha-cells after destruction of beta-cells in rats. Diabetes 1987;36:365–373.

    Article  PubMed  CAS  Google Scholar 

  25. Kniel PC, Junker U, Perrin IV, Bestetti GE, Rossi GL. Varied effects of experimental diabetes on the autonomic nervous system of the rat. Lab Invest 1986;54:523–530.

    PubMed  CAS  Google Scholar 

  26. Kennedy WR, Navarro X, Sutherland DE. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology 1995;45:773–780.

    PubMed  CAS  Google Scholar 

  27. Quick DC, Kennedy WR, Yoon KS. Ultrastructure of the secretory epithelium, nerve fibers, and capillaries in the mouse sweat gland. Anat Rec 1984;208:491–499.

    Article  PubMed  CAS  Google Scholar 

  28. Navarro X, Kennedy WR. Changes in sudomotor nerve territories with aging in the mouse. J Auton Nerv Syst 1990;31:101–107.

    Article  PubMed  CAS  Google Scholar 

  29. Cardone C, Dyck PJ. A neuropathic deficit, decreased sweating, is prevented and ameliorated by euglycemia in streptozocin diabetes in rats. J Clin Invest 1990;86:248–253.

    Article  PubMed  CAS  Google Scholar 

  30. Anderson LC, Garrett JR, Proctor GB. Morphological effects of sympathetic nerve stimulation on rat parotid glands 3–4 weeks after the induction of streptozotocin diabetes. Arch Oral Biol 1990;35:829–838.

    Article  PubMed  CAS  Google Scholar 

  31. Anderson LC, Garrett JR, Suleiman AH, Proctor GB, Chan KM, Hartley R. In vivo secretory responses of submandibular glands in streptozotocin-diabetic rats to sympathetic and parasympathetic nerve stimulation. Cell Tissue Res 1993;274:559–566.

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki H, Schmelzer JD, Zollman PJ, Low PA. Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol 1997;93:118–128.

    Article  PubMed  CAS  Google Scholar 

  33. McManis PG, Schmelzer JD, Zollman PJ, Low PA. Blood flow and autoregulation in somatic and autonomic ganglia. Comparison with sciatic nerve. Brain 1997;120:445–449.

    Article  PubMed  Google Scholar 

  34. Kishi Y, Schmelzer JD, Yao JK, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 1999;48:2045–2051.

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt RE, Dorsey DA, Roth KA, Parvin CA, Hounsom L, Tomlinson DR. Effect of streptozotocin-induced diabetes on NGF, P75(NTR) and TrkA content of prevertebral and paravertebral rat sympathetic ganglia. Brain Res 2000;867:146–156.

    Article  Google Scholar 

  36. Schmidt RE, Dorsey DA, Beaudet LN, Parvin CA, Escandon E. Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. J Neuropathol Exp Neurol 2001;60:263–273.

    PubMed  CAS  Google Scholar 

  37. Schmidt RE, Dorsey DA, Beaudet LN, et al. Inhibition of sorbitol dehydrogenase exacerbates autonomic neuropathy in rats with streptozotocin-induced diabetes. J Neuropathol Exp Neurol 2001;60:1153–1169.

    PubMed  CAS  Google Scholar 

  38. Schmidt RE. Neuronal preservation in the sympathetic ganglia of rats with chronic streptozotocin-induced diabetes. Brain Res 2001;921:256–259.

    Article  PubMed  CAS  Google Scholar 

  39. Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. Int Rev Neurobiol 2002;50:115–144.

    PubMed  CAS  Google Scholar 

  40. Melman A. Pathophysiologic basis of erectile dysfunction. What can we learn from animal models? Int J Impot Res 2001;13:140–142.

    Article  PubMed  CAS  Google Scholar 

  41. Melman A, Christ GJ. Integrative erectile biology. The effects of age and disease on gap junctions and ion channels and their potential value to the treatment of erectile dysfunction. Urol Clin North Am 2001;28:217–231.

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalez-Cadavid NF, Rajfer J. Therapy of erectile dysfunction: potential future treatments. Endocrine 2004;23:167–176.

    Article  PubMed  CAS  Google Scholar 

  43. Rehman J, Christ G, Melman A, Fleischmann J. Intracavernous pressure responses to physical and electrical stimulation of the cavernous nerve in rats. Urology 1998;51:640–644.

    Article  PubMed  CAS  Google Scholar 

  44. Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 1990; 170:843–850.

    Article  PubMed  CAS  Google Scholar 

  45. Vernet D, Cai L, Garban H, et al. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type I) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology 1995;136:5709–5717.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez-Cadavid NF, Ignarro LJ, Rajfer J. Nitric oxide and cyclic GMP in the penis. Mol Urol 1999;3:51–59.

    PubMed  CAS  Google Scholar 

  47. Li H, Forstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol 2000;190:244–254.

    Article  PubMed  CAS  Google Scholar 

  48. Garban H, Vernet D, Freedman A, Rajfer J, Gonzalez-Cadavid N. Effect of aging on nitric oxide-mediated penile erection in rats. Am J Physiol 1995;268:H467–475.

    PubMed  CAS  Google Scholar 

  49. Nehra A, Azadzoi KM, Moreland RB, et al. Cavernosal expandability is an erectile tissue mechanical property which predicts trabecular histology in an animal model of vasculogenic erectile dysfunction. J Urol 1998;159:2229–2236.

    Article  PubMed  CAS  Google Scholar 

  50. Nehra A, Goldstein I, Pabby A, et al. Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J Urol 1996;156:1320–1329.

    Article  PubMed  CAS  Google Scholar 

  51. Christ GJ, Day N, Santizo C, et al. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Am J Physiol Heart Circ Physiol 2004;287: H1544–H1553.

    Article  PubMed  CAS  Google Scholar 

  52. Christ GJ, Rehman J, Day N, et al. Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am J Physiol 1998;275: H600–H608.

    PubMed  CAS  Google Scholar 

  53. Melman A, Zhao W, Davies KP, Bakal R, Christ GJ. The successful long-term treatment of age related erectile dysfunction with hSlo cDNA in rats in vivo. J Urol 2003; 170:285–290.

    Article  PubMed  CAS  Google Scholar 

  54. Magee TR, Ferrini M, Garban HJ, et al. Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol Reprod 2002;67:20–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Low, P.A. (2007). Experimental Diabetic Autonomic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics