Skip to main content

Metabolic-Functional-Structural Correlations in Somatic Neuropathies in the Spontaneously Type 1 and Type 2 Diabetic BB-Rats

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

Abstract

Diabetic neuropathy (DPN) is a dynamic condition affecting both type 1 and type 2 diabetic subjects. It can be divided into an early and reversible metabolic phase of nerve dysfunction. This is caused by hyperglycemia-induced activation of the polyol-pathway, redox imbalances as well as by insulin/C-peptide deficiencies resulting in impaired neural Na+/K+-ATPase activity and impairment of endoneurial blood flow. Superimposed on these metabolic abnormalities, progressive structural changes evolve which become increasingly resistant to therapeutic interventions. These affect both unmyelinated and myelinated fiber populations and consist of axonal atrophy, degeneration, and loss occurring in a dying-back fashion. The underlying mechanisms include impaired neurotrophic support including perturbed insulin/C-peptide signaling, resulting in suppressed expression of neuroskeletal protein genes, and aberrant phosphorylation of these axonal building blocks. Both the early metabolic and later occurring molecular abnormalities underlying the structural abnormalities are more severely affected in type 1 DPN relating to insulin and C-peptide deficiencies, which are not present in type 2 diabetes. This distinction between the two forms of DPN also underlies nodal and paranodal degeneration unique to both human and experimental type 1 DPN. Impaired insulin action affects the expression of nodal and paranodal adhesive molecules and their post-translational modifications. Such aberrations result in disruption of the paranodal barrier function with decreased nodal Na+-channels densities and worsening of the nerve conduction defect in type 1 DPN. In conclusion, major differences exist between type 1 and type 2 DPN, which can be directly related to the absence and presence of insulin action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sima AAF, Nathaniel V, Bril V, McEwen TAJ, Greene DA. Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 1988; 81:349–364.

    PubMed  CAS  Google Scholar 

  2. Sugimoto K, Murakawa Y, Sima AAF. Diabetic neuropathy—a continuing enigma. Diabetes/Metab Res Rev 2000;16(6):408–433.

    Article  CAS  Google Scholar 

  3. Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ III, O’Brien PC. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study Cohort. Diabetes Care 1999;22:1479–1486.

    Article  PubMed  CAS  Google Scholar 

  4. Dyck JB, Dyck PJ. Diabetic neuropathy. in Diabetic neuropathy (Dyck and Thomas eds.), WB Saunders Comp., Philadelphia, 1999, pp. 255–295.

    Google Scholar 

  5. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabete Metab 1977;3:97–107.

    PubMed  CAS  Google Scholar 

  6. Vinik AI, Liuzze FJ, Holland MT, Stansberry KB, LeBean JM, Colen LB. Diabetic neuropathies. Diabetes Care 1992;15:1926–1975.

    Article  PubMed  CAS  Google Scholar 

  7. Sima AAF. Pathological definition and evaluation of diabetic neuropathy and clinical correlations. Can J Neurol Sci 1994;21(Suppl 4):S13–S17.

    PubMed  CAS  Google Scholar 

  8. Tesfaye S, Stevens LK, Stephanson JM, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complication Study. Diabetologia 1996;39:1377–1384.

    Article  PubMed  CAS  Google Scholar 

  9. Sima AAF, Thomas PK, Ishii D, Vinik A. Diabetic Neuropathies. Diabetologia 1997;40: B74–B77.

    Article  PubMed  Google Scholar 

  10. Sima AAF. New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci 2003;60:2445–2464.

    Article  PubMed  CAS  Google Scholar 

  11. Greene DA, Sima AAF, Stevens MB, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992;15:1902–1925.

    Article  PubMed  CAS  Google Scholar 

  12. Sima AAF. Diabetes underlies common neurological disorders. Ann Neurol 2004;56:459–461 (Editorial).

    Article  PubMed  Google Scholar 

  13. Sima AAF. Can the BB-rat help to unravel diabetic neuropathy? Annotation. Neuropath Appl Neurobiol 1985;11:253–264.

    CAS  Google Scholar 

  14. Marliss EB, Nakhooda AF, Poussier P, Sima AAF. The diabetic syndrome of the BB-Wistar rat. Possible relevance to type I (insulin dependent) diabetes in man. Diabetologia 1982;22:225–232.

    Article  PubMed  CAS  Google Scholar 

  15. Sima AAF, Merry AC, Hall DE, Grant M, Murray FT, Guberski D. The BB/ZDR-rat; A model for type II diabetic neuropathy: Exp. Clin Endocrin Diabetes 1997;105:63–64.

    Google Scholar 

  16. Sima AAF, Bril V, Greene DA. Pathogenetic heterogeneity in human diabetic neuropathy. Pediatr Adoles Endocrin 1989;18:56–62.

    Google Scholar 

  17. Greene DA, Lattimer SA, Sima AAF. Perspectives in diabetes. Are disturbances of sorbitol, phosphoinositide and (Na,K)-ATP-ase regulation involved in the pathogenesis of diabetic neuropathy? Diabetes 1988;37:688–693.

    Article  PubMed  CAS  Google Scholar 

  18. Pop-Busui R, Sullivan KA, van Huysen C, et al. Depletion of taurine in experimental diabetic neuropathy: implications for nerve metabolic, vascular and functional deficits. Exp Neurol 2001;168:259–272.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens MJ, Dananberg J, Feldman EL, et al. The linked roles of nitric oxide, aldose reductase and (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. Metabolism 1996;45:865–872.

    Article  PubMed  CAS  Google Scholar 

  20. Requena JR, Baynes JW. Studies in animal models on the role of glycation and advanced glycation-end-products (AGE’s) in the pathogenesis of diabetic complications: pitfalls and limitations. in Chronic Complications in Diabetes (Sima AAF ed.), Harwood Academy Publication, Amsterdam, 2000, pp. 43–70.

    Google Scholar 

  21. Apfel SC. Neurotrophic factors and diabetic peripheral neuropathy. Eur Neurol 1999;41(Suppl 1):27–34.

    Article  PubMed  CAS  Google Scholar 

  22. LeRoith D. The insulin-like growth factor system. Exp Diabetes Res 2003;4:205–212.

    Article  Google Scholar 

  23. Pittinger G, Vinik A. Nerve growth factor and diabetic neuropathy. Exp Diabetes Res 2003;4:257–270.

    Article  Google Scholar 

  24. Sima AAF, Li Z-G, Zhang W. The IGF system and neurological complications in diabetes. Exp Diabetes Res 2003;4:235–256.

    Article  Google Scholar 

  25. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.

    Article  PubMed  CAS  Google Scholar 

  26. Cameron NE, Cotter MA, Robertson S. Rapid reversal of a motor nerve conduction deficit in streptozotocin-diabetic rats by the angiotensin converting enzyme inhibitor lisinopril. Acta Diabetol 1993;30:46–48.

    Article  PubMed  CAS  Google Scholar 

  27. Stevens MJ, Obrosova I, Pop-Busui R, Greene DA, Feldman EL. Pathogenesis of diabetic neuropathy. in Ellenberg and Rifkin’s Diabetes Mellitus (Porte D Jr, Sherwin RS, Baron A eds.), McGraw Hill, New York, 2002, pp. 747–770.

    Google Scholar 

  28. Stevens MJ, Zhang W, Li F, Sima AAF. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor-rats. Am J Physiol 2004;287:E497–E505.

    CAS  Google Scholar 

  29. Greene DA, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides and sodium-potassium ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987;316:599–606.

    Article  PubMed  CAS  Google Scholar 

  30. Greene DA, Chakrabarti S, Lattimer SA, Sima AAF. Role of sorbitol accumulation and myoinositol depletion in paranodal swelling of large myelinated nerve fibers in the insulindeficient spontaneously diabetic biobreeding rat. J Clin Invest 1987;79:1479–1485.

    PubMed  CAS  Google Scholar 

  31. Sima AAF, Zhang W, Xu G, Sugimoto K, Guberski DL, Yorek MA. A comparison of diabetic polyneuropathy in type-2 diabetic BBZDR/Wor-rat and in type 1 diabetic BB/Worrat. Diabetologia 2000;43:786–793.

    Article  PubMed  CAS  Google Scholar 

  32. Sima AAF, Zhang W-X, Sugimoto K, et al. C-peptide prevents and improves chronic type 1 diabetic neuropathy in the BB/Wor-rat. Diabetologia 2001;44:889–897.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang W, Yorek M, Pierson CR, Murakawa Y, Breidenbach A, Sima AAF. Human C-peptide dose dependently prevents early neuropathy in the BB/Wor-rat. Intern J Exp Diabetes Res 2001;2(3):187–194.

    Article  CAS  Google Scholar 

  34. Forst T, de la Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+, K+-ATPase activity in diabetes mellitus type 1. Clin Sci 2000;98:283–290.

    Article  PubMed  CAS  Google Scholar 

  35. Ohtomo Y, Aperia A, Sahlgren B, Johansson B-L, Wahren J. C-peptide stimulates rat renal tubular Na+/K+-ATPase activity in synergism with neuropeptide Y. Diabetologia 1996;39:199–205.

    Article  PubMed  CAS  Google Scholar 

  36. Greene DA, Sima AAF, Stevens M, et al. Aldose reductase inhibitors: An approach to the treatment of the nerve damage of diabetic neuropathy. Diabetes/Metab Rev 1993;9(3): 189–217.

    CAS  Google Scholar 

  37. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochem J 2002;366:737–744.

    PubMed  CAS  Google Scholar 

  38. Wahren J, Ekberg K, Johansson J, et al. Role of C-peptide in human physiology. Am J Physiol 2000;278:E759–E768.

    CAS  Google Scholar 

  39. Grunberger G, Sima AAF. The C-peptide signaling. Exp Diabetes Res 2004;5:25–36.

    Article  CAS  Google Scholar 

  40. Pittinger GL, Liu D, Vinik AI. The apoptotic death of neuroblastoma cells caused by serum from patients with insulin-dependent diabetes and neuropathy may be Fas-mediated. J Neuroimmunol 1997;76:153–160.

    Article  Google Scholar 

  41. Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropath Exp Neurology 2003;62:765–779.

    CAS  Google Scholar 

  42. Li Z-G, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 2003;19:375–385.

    Article  PubMed  CAS  Google Scholar 

  43. Li Z-G, Zhang W, Sima AAF. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 2005;1037:12–24.

    Article  PubMed  CAS  Google Scholar 

  44. Reico-Pinto E, Lang FF, Ishii DN. Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human blastoma cells. Proc Natl Acad Sci USA 1984;81:2562–2566.

    Article  Google Scholar 

  45. Pierson CR, Zhang W, Murakawa Y, Sima AAF. Tubulin and neurofilament expression and axonal growth differ in type 1 and type 2 diabetic polyneuropathy. J Neuropath Exp Neurol 2003;62:260–271.

    PubMed  CAS  Google Scholar 

  46. Kamiya H, Murakawa Y, Zhang W, Sima AAF. Sensory nociceptive neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 2005;21:448–458.

    Article  PubMed  CAS  Google Scholar 

  47. Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2004;56:827–835.

    Article  PubMed  CAS  Google Scholar 

  48. Sima AAF, Kamiya H. Insulin, C-peptide and diabetic neuropathy. Sci Med 2004;10:308–319.

    Google Scholar 

  49. Johansson BL, Borg K, Fernquist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabetes Med 2000;17:181–189.

    Article  CAS  Google Scholar 

  50. Johansson BL, Borg K, Fernquist-Forbes E, et al. C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 1996;39:687–695.

    Article  PubMed  CAS  Google Scholar 

  51. Ekberg K, Brismar T, Johansson B-L, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 2003;52:536–541.

    Article  PubMed  CAS  Google Scholar 

  52. Brismar T, Sima AAF. Changes in nodal function in nerve fibres of the spontaneously diabetic BB-Wistar rat. Nodal clamp analysis. Acta Physiol Scand 1981;113:499–506.

    Article  PubMed  CAS  Google Scholar 

  53. Sima AAF, Brismar T. Reversible diabetic nerve dysfunction. Structural correlates to electrophysiological abnormalities. Ann Neurol 1985;18:21–29.

    Article  PubMed  CAS  Google Scholar 

  54. Brismar T. Abnormal Na-currents in diabetic rat nerve nodal membrane. Diabetes Med 1993;10(Suppl 2):S110–S112.

    Article  Google Scholar 

  55. Sima AAF, Lattimer SA, Yagihashi S, Greene DA. Axo-glial dysjunction: A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic BB-rat. J Clin Invest 1986;77:474–484.

    PubMed  CAS  Google Scholar 

  56. Sima AAF, Prashar A, Zhang W-X, Chakrabarti S, Greene DA. Preventive effect of long term aldose reductase inhibition (Ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic BB-rat. J Clin Invest 1990;85:1410–1420.

    PubMed  CAS  Google Scholar 

  57. Sima AAF, Ristic H, Merry A, et al. The primary preventional and secondary interventative effects of acetyl-L-carnitine on diabetic neuropathy in the BB/W-rat. J Clin Invest 1996;97:1900–1907.

    PubMed  CAS  Google Scholar 

  58. Kitano Y, Kuwabara S, Misawa S, et al. The acute effect of glycemic control on axonal excitability in human diabetics. Ann Neurol 2004;56:462–467.

    Article  PubMed  CAS  Google Scholar 

  59. Brismar T, Sima AAF, Greene DA. Reversible and irreversible nodal dysfunction in diabetic neuropathy. Ann Neurol 1987;21:504–507.

    Article  PubMed  CAS  Google Scholar 

  60. Cherian PV, Kamijo M, Angelides KJ, Sima AAF. Nodal Na+-channel displacement is associated with nerve conduction slowing in the chronically diabetic BB/W-rat. J Diabetes Complications 1996;10:192–200.

    Article  PubMed  CAS  Google Scholar 

  61. Sima AAF, Zhang W, Li Z-G, Murakawa Y, Pierson CR. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 2004;53:1556–1563.

    Article  PubMed  CAS  Google Scholar 

  62. Quattrini C, Tesfaye S. Understanding the impact of painful diabetic neuropathy. Diabetes Metab Res Rev 2003;19(Suppl 1):S2–S8.

    Article  PubMed  Google Scholar 

  63. Kapur D. Neuropathic pain and diabetes. Diabetes Metab Res Rev 2003;19(Suppl 1): S9–S15.

    Article  PubMed  CAS  Google Scholar 

  64. Dyck PJ, Lambert EH, O’Brien PC. Pain in peripheral neuropathy related to rate and kind of fiber degeneration. Neurology 1976;26:466–471.

    PubMed  CAS  Google Scholar 

  65. Woolf CJ, Shortland P, Reynolds M, et al. Reorganization of central terminals of myelinated primary afferents in rat dorsal horn following peripheral axotomy. J Comp Neurol 1995;360:121–134.

    Article  PubMed  CAS  Google Scholar 

  66. Chen X, Levin JD. Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat. Neuroscience 2003;121:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  67. Burchiel KJ, Russel LC, Lee RP, Sima AAF. Spontaneous activity of primary afferent neurons in diabetic BB-Wistar rats. A possible mechanism of chronic diabetic pain. Diabetes 1985;34:1210–1213.

    Article  PubMed  CAS  Google Scholar 

  68. Arendt-Nielsen L, Sonnenborg FA, Andersen OK. Fascilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: an experimental study on central integration in humans. Eur J Appl Physiol 2000;81:165–173.

    Article  PubMed  CAS  Google Scholar 

  69. Hirade M, Yasuda H, Omatsu-Kanbe M, et al. Tetrodotoxin resistant sodium channels of dorsal root ganglion neurons are readily activated in diabetic rats. Neuroscience 1999;90:933–939.

    Article  PubMed  CAS  Google Scholar 

  70. Murakawa Y, Zhang W, Pierson CR, et al. Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 2002; 18:473–483.

    Article  PubMed  CAS  Google Scholar 

  71. Grunberger G, Qiang X, Li Z-G, et al. Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 2001;44:1247–1257.

    Article  PubMed  CAS  Google Scholar 

  72. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001;24:1448–1453.

    Article  PubMed  CAS  Google Scholar 

  73. Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve 2001;24:1229–1231.

    Article  PubMed  CAS  Google Scholar 

  74. Sima AAF, Hay K. Functional aspects and pathogenetic considerations of the neuropathy in the spontaneously diabetic BB-Wistar rat. Neuropath Appl Neurobiol 1981;7:341–350.

    CAS  Google Scholar 

  75. Sima AAF, Lorusso AC, Thibert P. Distal symmetric polyneuropathy in the spontaneously diabetic BB-Wistar rat. An ultrastructural and teased fiber study. Acta Neuropath (Berl) 1982;58:39–47.

    Article  CAS  Google Scholar 

  76. Greene DA, Lattimer SA, Sima AAF. Perspectives in diabetes. Are disturbances of sorbitol, phosphoinositide and (Na,K)-ATP-ase regulation involved in the pathogenesis of diabetic neuropathy? Diabetes 1988;37:688–693.

    Article  PubMed  CAS  Google Scholar 

  77. Sima AAF, Hinton D. Hirano-bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neurol Scand 1983;68:107–112.

    PubMed  CAS  Google Scholar 

  78. Zochodne DW, Verge VMK, Cheng C, Sun H, Johnston J. Does diabetes target ganglion neurons? Progressive sensory neuron involvement in long term experimental diabetes. Brain 2001;124:2319–2334.

    Article  PubMed  CAS  Google Scholar 

  79. Medori R, Jenich H, Autilio-Gambetti L, Gambetti L, Gambetti P. Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci 1988;8:1814–1821.

    PubMed  CAS  Google Scholar 

  80. Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 1999;122:2109–2118.

    Article  PubMed  Google Scholar 

  81. Sima AAF, Bouchier M, Christensen H. Axonal atrophy in sensory nerves of the diabetic BB-Wistar rat, a possible early correlate of human diabetic neuropathy. Ann Neurol 1983;13:264–272.

    Article  PubMed  CAS  Google Scholar 

  82. Sima AAF, Yagihashi S. Central-peripheral distal axonopathy in the spontaneously diabetic BB-rat: Ultrastructural and morphometric findings. Diabetes Res Clin Prac 1986;1: 289–298.

    Article  CAS  Google Scholar 

  83. Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans. J Neuropath Exp Neurol 1996;55:1181–1193.

    PubMed  CAS  Google Scholar 

  84. Sima AAF. Diabetic Neuropathy. (Letter to the Editor). J Neuropath Exp Neurol 1997;56:458.

    PubMed  CAS  Google Scholar 

  85. Brown AA, Xu T, Arroyo EJ, et al. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rat. J Neurosci Res 2001;65:1226–1277.

    Article  Google Scholar 

  86. Sima AAF, Pierson CR. Diabetic neuropathy; a heterogeneous, dynamic and progressive disorder. J Neurosci Res 2001;66:1226–1227.

    Article  PubMed  CAS  Google Scholar 

  87. Yamamoto K, Merry A, Sima AAF. An orderly development of paranodal axoglial junctions and bracelets of Nageotte in the rat sural nerve. Dev Brain Res 1996;96:36–45.

    Article  CAS  Google Scholar 

  88. Pedraza L, Huang JK, Colman DR. Organizing principles of the axoglial apparatus. Neuron 2001;30:335–344.

    Article  PubMed  CAS  Google Scholar 

  89. Davis JQ, Lambert S, Bennett V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (micin +/-third FN III domain) on NrCAM at nodal axon segments. J Cell Biol 1996;135:1355–1367.

    Article  PubMed  CAS  Google Scholar 

  90. Isom LL. The role of sodium channels in cell adhesion. Front Biosci 2002;7:12–23.

    Article  PubMed  Google Scholar 

  91. Malhotra JD, Koopman MC, Kazen-Gillespie KA, Fettman M, Hortsch M, Isom L. Structural requirements for interaction of sodium channel β1 subunits with ankyrin. J Biol Chem 2002;277:26,681–26,688.

    Article  PubMed  CAS  Google Scholar 

  92. Lustig H, Zanazzi G, Sakurai T, et al. Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr Biol 2001;11:1864–1869.

    Article  PubMed  CAS  Google Scholar 

  93. Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Ann Rev Biochem 1997;66:315–335.

    Article  PubMed  CAS  Google Scholar 

  94. Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 2001;291:2376–2378.

    Article  PubMed  CAS  Google Scholar 

  95. Sugimoto K, Murakawa Y, Zhang W-X, Xu G, Sima AAF. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes/Metab Res Rev 2000;16(5):354–363.

    Article  CAS  Google Scholar 

  96. Einheber S, Zanazzi G, Ching W, et al. The axonal membrane Caspr, a homologue of neurorexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 1997;139:1495–1506.

    Article  PubMed  CAS  Google Scholar 

  97. Peles E, Nativ M, Lustig M, et al. Identification of a novel contactin associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 1997;16:978–988.

    Article  PubMed  CAS  Google Scholar 

  98. Sugimoto K, Murakawa Y, Sima AAF. Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. JPNS 2002;7:44–53.

    Article  PubMed  CAS  Google Scholar 

  99. Sima AAF, Kamiya H. Progressive diabetic sensory neuropathy is not apoptosis related. Peripheral Nervous System Society, Florence, Italy, 2005.

    Google Scholar 

  100. Yagihashi S, Kamijo M, Watanabe K. Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin diabetic rats. Am J Pathol 1990;136:1365–1373.

    PubMed  CAS  Google Scholar 

  101. Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL. Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 1987;84: 3472–3476.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sima, A.A.F., Zhang, W., Kamiya, H. (2007). Metabolic-Functional-Structural Correlations in Somatic Neuropathies in the Spontaneously Type 1 and Type 2 Diabetic BB-Rats. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics