Skip to main content

Neuronal and Schwann Cell Death in Diabetic Neuropathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

  • 2093 Accesses

Abstract

The balance of evidence supports the concept that programmed cell death (PCD) occurs in cells of the peripheral nervous system (PNS) in the presence of diabetes, elevated glucose levels, or insulin deprivation. The morphological appearance of apoptosis, the severity of cell death, and the mechanism of cell death might vary between different cell types in the PNS and between different mammalian models of diabetes. However, most cells show evidence of mitochondrial (Mt) damage and some, if not all, the features of the original morphological descriptions of apoptosis. PCD has mainly been described in cell culture and animal models of diabetes, although there is also morphological evidence of apoptosis in Schwann cells from human sural nerve. Evidence of PCD or organellar damage often exceeds the observed dorsal root ganglion neuronal loss. Apoptosis represents only the final pathological observation in this state of organellar failure or suboptimal organelle function. It is likely that even nonapoptotic neurons exhibit impaired metabolic function and protein synthesis and this dysregulation will in part induce neuropathy. One potential mechanism for induction of apoptosis in the PNS is diabetes-induced generation of reactive oxygen species and dysregulation of Mt function. During Mt dysfunction, several essential players of apoptosis, including procaspases and cytochrome-c are released into the cytosol and result in the formation of multimeric complexes that induce apoptotic cell death. Antioxidants and certain regulators of the inner Mt membrane potential, for example B-cell lymphoma (BCL) proteins, uncoupling proteins, and growth factors might prevent apoptosis in the PNS. The primary precipitating events leading to apoptosis in the PNS need to be clearly delineated if it is to be understood how to intervene or prevent the most common complication of diabetes, namely neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971;105:13–20.

    Article  PubMed  CAS  Google Scholar 

  2. Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002;181-182:471–474.

    Article  PubMed  CAS  Google Scholar 

  3. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626–629.

    Article  PubMed  CAS  Google Scholar 

  4. Kiechle FL, Zhang X. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 2002;326:27–45.

    Article  PubMed  CAS  Google Scholar 

  5. Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002;4:769–781.

    Article  PubMed  CAS  Google Scholar 

  6. Leist M, Single B, Naumann H, et al. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 1999;249:396–403.

    Article  PubMed  CAS  Google Scholar 

  7. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000;80:315–360.

    PubMed  CAS  Google Scholar 

  8. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002;9:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  9. Zheng L, Szabo C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 2004;53: 2960–2967.

    Article  PubMed  CAS  Google Scholar 

  10. Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429.

    Article  PubMed  CAS  Google Scholar 

  11. Obrosova IG, Pacher P, Szabo C, et al. Aldose reductase inhibition counteracts oxidativenitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 2005;54:234–242.

    Article  PubMed  CAS  Google Scholar 

  12. Nagata S, Golstein P. The Fas death factor. Science 1995;267:1449–1456.

    Article  PubMed  CAS  Google Scholar 

  13. Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004;29:486–494.

    Article  PubMed  CAS  Google Scholar 

  14. Degli Esposti M. Mitochondria in apoptosis: past, present and future. Biochem Soc Trans 2004;32:493–495.

    Article  PubMed  Google Scholar 

  15. Guillot R, Bringuier AF, Porokhov B, Guillausseau PJ, Feldmann G. Increased levels of soluble Fas in serum from diabetic patients with neuropathy. Diabetes Metab 2001;27:315–321.

    PubMed  CAS  Google Scholar 

  16. Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 2004;53:726–734.

    Article  PubMed  CAS  Google Scholar 

  17. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  18. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:44–51.

    Article  PubMed  CAS  Google Scholar 

  19. Leinninger GM, Russell JW, van Golen CM, Berent A, Feldman EL. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ 2004;11:885–896.

    Article  PubMed  CAS  Google Scholar 

  20. Russell JW, Golovoy D, Vincent AM, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002;16:1738–1748.

    Article  PubMed  CAS  Google Scholar 

  21. Cowell RM, Russell JW. Peripheral Neuropathy and the Schwann Cell, in Neuroglia (Kettenmann H, Ransom BR, eds.), Oxford University Press, 2004, pp. 573–585.

    Google Scholar 

  22. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann NY Acad Sci 2002;959:368–383.

    Article  PubMed  CAS  Google Scholar 

  23. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004;25:612–628.

    Article  PubMed  CAS  Google Scholar 

  24. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998;60:619–642.

    Article  PubMed  CAS  Google Scholar 

  25. Eskes R, Antonsson B, Osen-Sand A, et al. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 1998;143:217–224.

    Article  PubMed  CAS  Google Scholar 

  26. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998;95:4997–5002.

    Article  PubMed  CAS  Google Scholar 

  27. Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999;6:347–363.

    Article  PubMed  CAS  Google Scholar 

  28. Srinivasan S, Stevens MJ, Wiley JW. Diabetic peripheral neuropathy: Evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932–1938.

    Article  PubMed  CAS  Google Scholar 

  29. Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 2003;52:165–171.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 2003;52:2363–2371.

    Article  PubMed  CAS  Google Scholar 

  31. Kishi M, Tanabe J, Schmelzer JD, Low PA. Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 2002;51:819–824.

    Article  PubMed  CAS  Google Scholar 

  32. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997;387:773–776.

    Article  PubMed  CAS  Google Scholar 

  33. Schulz JB, Bremen D, Reed JC, et al. Cooperative interception of neuronal apoptosis by bcl-2 and bag-1 expression: prevention of caspase activaton and reduced production of reactive oxygen species. J Neurochem 1997;69:2075–2086.

    Article  PubMed  CAS  Google Scholar 

  34. Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H. Free radical-independent protection by nerve growth factor and Bcl-2 of PC 12 cells from hydrogen peroxide-triggered apoptosis. J Biochem 1996; 120:540–546.

    PubMed  CAS  Google Scholar 

  35. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  36. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735–1738.

    Article  PubMed  CAS  Google Scholar 

  37. Bissonette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by cmyc is inhibited by bcl-2. Nature 1992;359:552–554.

    Article  Google Scholar 

  38. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 1994;262:695–700.

    Article  Google Scholar 

  39. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that BCL2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994;91:6569–6573.

    Article  PubMed  CAS  Google Scholar 

  40. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003;301:513–517.

    Article  PubMed  CAS  Google Scholar 

  41. Zamzami N, El Hamel C, Maisse C, et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000; 19:6342–6350.

    Article  PubMed  CAS  Google Scholar 

  42. Ruffolo SC, Breckenridge DG, Nguyen M, et al. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000;7:1101–1108.

    Article  PubMed  CAS  Google Scholar 

  43. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000;7:1166–1173.

    Article  PubMed  CAS  Google Scholar 

  44. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.

    Article  PubMed  CAS  Google Scholar 

  45. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003;10:870–880.

    Article  PubMed  CAS  Google Scholar 

  46. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    Article  PubMed  CAS  Google Scholar 

  47. Krohn AJ, Wahlbrink T, Prehn JH. Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 1999; 19:7394–7404.

    PubMed  CAS  Google Scholar 

  48. Pan G, O’Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998;273:5841–5845.

    Article  PubMed  CAS  Google Scholar 

  49. Song Q, Kuang Y, Dixit VM, Vincenz C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 1999;18:167–178.

    Article  PubMed  CAS  Google Scholar 

  50. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,3,6,7,8, and 10 in a caspase-9 dependent manner. J Cell Biol 1999;144:281–292.

    Article  PubMed  CAS  Google Scholar 

  51. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44:817–829.

    CAS  Google Scholar 

  52. Jacobson MD, Evan GI. Breaking the ice. Structural and functional similarities have been discovered between two mammalian proteins, Bcl-2 and interleukin 1b-converting enzyme, and proteins encoded by nematode cell-death genes. Curr Biol 1994;4:337–340.

    Article  PubMed  CAS  Google Scholar 

  53. Corkins MR, Vanderhoof JA, Slentz DH, MacDonald RG, Park JHY. Growth stimulation by transfection of intestinal epithelial cells with an antisense insulin-like growth factor binding protein-2 construct. Biochem Biophys Res Commun 1995;211:707–713.

    Article  PubMed  CAS  Google Scholar 

  54. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000;97:12,222–12,226.

    Article  PubMed  CAS  Google Scholar 

  55. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.

    Article  PubMed  CAS  Google Scholar 

  56. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.

    Article  PubMed  CAS  Google Scholar 

  57. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49:1006–1015.

    Article  PubMed  CAS  Google Scholar 

  58. Russell JW, Golovoy D, Vincent A, et al. High glucose induced-oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002; 16:1738–1748.

    Article  PubMed  CAS  Google Scholar 

  59. Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res 2002;509:127–151.

    PubMed  CAS  Google Scholar 

  60. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328:85–92.

    Article  PubMed  CAS  Google Scholar 

  61. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002;3:214–220.

    Article  PubMed  CAS  Google Scholar 

  62. Cowell R, Cherian K, Russell JW. Regulation of neuronal nitric oxide synthase (nNOS) in models of diabetic neuropathy. J Peripheral Nerv System 2003;8:1–78.

    Google Scholar 

  63. Garcia SF, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADPribose) polymerase activation. Nat Med 2001;7:108–113.

    Article  Google Scholar 

  64. Cowell RM, Russell JW. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J Investig Med 2004;52:33–44.

    Article  PubMed  CAS  Google Scholar 

  65. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001;3:193–197.

    Article  PubMed  CAS  Google Scholar 

  66. Foster MW, McMahon TJ, Stamler JS. S-nitrosylation in health and disease. Trends Mol Med 2003;9:160–168.

    Article  PubMed  CAS  Google Scholar 

  67. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 2000;14:1889–1900.

    Article  PubMed  CAS  Google Scholar 

  68. Raoul C, Estevez AG, Nishimune H, et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron 2002;35:1067–1083.

    Article  PubMed  CAS  Google Scholar 

  69. Gonzalez-Zulueta M, Ensz LM, Mukhina G, et al. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 1998;18:2040–2055.

    PubMed  CAS  Google Scholar 

  70. Murphy MP. Nitric oxide and cell death. Biochim Biophys Acta 1999;1411:401–414.

    Article  PubMed  CAS  Google Scholar 

  71. Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33:1451–1464.

    Article  PubMed  CAS  Google Scholar 

  72. Eu JP, Liu L, Zeng M, Stamler JS. An apoptotic model for nitrosative stress. Biochemistry 2000;39:1040–1047.

    Article  PubMed  CAS  Google Scholar 

  73. Reiss P, Casula M, de Ronde A, Weverling GJ, Goudsmit J, Lange JM. Greater and more rapid depletion of mitochondrial DNA in blood of patients treated with dual (zidovudine+didanosine or zidovudine+zalcitabine) vs. single (zidovudine) nucleoside reverse transcriptase inhibitors. HIV Med 2004;5:11–14.

    Article  PubMed  CAS  Google Scholar 

  74. Zochodne DW, Verge VM, Cheng C, et al. Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropathol Exp Neurol 2000;59:798–807.

    PubMed  CAS  Google Scholar 

  75. Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001;44:1973–1988.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas SR, Chen K, Keaney JF, Jr. Oxidative stress and endothelial nitric oxide bioactivity. Antioxid Redox Signal 2003;5:181–194.

    Article  PubMed  CAS  Google Scholar 

  77. Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J. Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 2001;124:2319–2334.

    Article  PubMed  CAS  Google Scholar 

  78. Sayers NM, Beswick LJ, Middlemas A, et al. Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 2003;52:2372–2380.

    Article  PubMed  CAS  Google Scholar 

  79. Vincent AM, McLean LL, Backus C, Feldman EL. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 2005; 19:638–640.

    PubMed  CAS  Google Scholar 

  80. Honma H, Podratz JL, Windebank AJ. Acute glucose deprivation leads to apoptosis in a cell model of acute diabetic neuropathy. J Peripher Nerv Syst 2003;8:65–74.

    Article  PubMed  Google Scholar 

  81. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001;50:1927–1937.

    Article  PubMed  CAS  Google Scholar 

  82. Obrosova IG. How does glucose generate oxidative stress in peripheral nerve? Int Rev Neurobiol 2002;50:3–35.

    PubMed  CAS  Google Scholar 

  83. Huang TJ, Price SA, Chilton L, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 2003;52:2129–2136.

    Article  PubMed  CAS  Google Scholar 

  84. Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci 2005;28:42–54.

    Article  PubMed  CAS  Google Scholar 

  85. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932–1938.

    Article  PubMed  CAS  Google Scholar 

  86. Jezek P, Costa AD, Vercesi AE. Evidence for anion-translocating plant uncoupling mitochondrial protein in potato mitochondria. J Biol Chem 1996;271:32,743–32,748.

    Article  PubMed  CAS  Google Scholar 

  87. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 1993;21:3097–3103.

    Article  PubMed  CAS  Google Scholar 

  88. Russell JW, Windebank AJ, Schenone A, Feldman EL. Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J Neurobiol 1998;36:455–467.

    Article  PubMed  CAS  Google Scholar 

  89. Ghatan S, Larner S, Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 2000; 150:335–347.

    Article  PubMed  CAS  Google Scholar 

  90. Leinninger GM, Backus C, Uhler MD, Lentz SI, Feldman EL. Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J 2004; 18:1544–1546.

    PubMed  CAS  Google Scholar 

  91. Gustafsson H, Adamson L, Hedander J, Walum E, Forsby A. Insulin-like growth factor type 1 upregulates uncoupling protein 3. Biochem Biophys Res Commun 2001;287:1105–1111.

    Article  PubMed  CAS  Google Scholar 

  92. Guerra C, Benito M, Fernandez M. IGF-I induces the uncoupling protein gene expression in fetal rat brown adipocyte primary cultures: role of C/EBP transcription factors. Biochem Biophys Res Commun 1994;201:813–819.

    Article  PubMed  CAS  Google Scholar 

  93. Valverde AM, Lorenzo M, Navarro P, Benito M. Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocrinol 1997;11:595–607.

    Article  PubMed  CAS  Google Scholar 

  94. Price SA, Hounsom L, Purves-Tyson TD, Fernyhough P, Tomlinson DR. Activation of JNK in sensory neurons protects against sensory neuron cell death in diabetes and on exposure to glucose/oxidative stress in vitro. Ann NY Acad Sci 2003;1010:95–99.

    Article  PubMed  CAS  Google Scholar 

  95. Honma H, Gross L, Windebank AJ. Hypoxia-induced apoptosis of dorsal root ganglion neurons is associated with DNA damage recognition and cell cycle disruption in rats. Neurosci Lett 2004;354:95–98.

    Article  PubMed  CAS  Google Scholar 

  96. Anand P, Terenghi G, Warner G, Kopelman P, Williams-Chestnut RE, Sinicropi DV. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 1996;2:703–707.

    Article  PubMed  CAS  Google Scholar 

  97. Unger JW, Klitzsch T, Pera S, Reiter R. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord. Exp Neurol 1998;153:23–34.

    Article  PubMed  CAS  Google Scholar 

  98. Berent-Spillson A, Robinson A, Golovoy D, Slusher B, Rojas C, Russell JW. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J Neurochem 2004;89:90–99.

    Article  PubMed  CAS  Google Scholar 

  99. Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 2002;513:197–223.

    PubMed  CAS  Google Scholar 

  100. Vincent AM, Maiese K. The metabotropic glutamate system promotes neuronal survival through distinct pathways of programmed cell death. Exp Neurol 2000;166:65–82.

    Article  PubMed  CAS  Google Scholar 

  101. DeBlasi A, Conn PJ, Pin J, Nicoletti F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001;22:114–120.

    Article  PubMed  Google Scholar 

  102. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 2000;75:889–907.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang W, Slusher B, Murakawa Y, et al. GCPII (NAALADase) inhibition prevents longterm diabetic neuropathy in type 1 diabetic BB/Wor rats. J Neurol Sci 2002;194:21–28.

    Article  PubMed  CAS  Google Scholar 

  104. Berent Spillson A, Russell JW. Metabotropic glutamate receptor regulation of neuronal injury. Exp Neurol 2003;184:S97–S105.

    Google Scholar 

  105. Russell JW, Feldman EL. Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm Metab Res 1999;31:90–96.

    Article  PubMed  CAS  Google Scholar 

  106. Guo C, Quobatari A, Shangguan Y, Hong S, Wiley JW. Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat. Neurogastroenterol Motil 2004;16:335–345.

    Article  PubMed  CAS  Google Scholar 

  107. Schmidt RE. Neuronal preservation in the sympathetic ganglia of rats with chronic streptozotocin-induced diabetes. Brain Res 2001;921:256–259.

    Article  PubMed  CAS  Google Scholar 

  108. Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Miller MS. Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. Am J Pathol 1999;155:1651–1660.

    PubMed  CAS  Google Scholar 

  109. Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 2003;163:21–28.

    PubMed  CAS  Google Scholar 

  110. Delaney CL, Russell JW, Cheng H-L, Feldman EL. Insulin-like growth factor-I and overexpression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 2001;60:147–160.

    PubMed  CAS  Google Scholar 

  111. Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 2004;320:241–248.

    Article  PubMed  CAS  Google Scholar 

  112. Pan Z, Sampath D, Jackson G, Werrbach-Perez K, Perez-Polo R. Nerve growth factor and oxidative stress in the nervous system. Adv Exp Med Biol 1997;429:173–193.

    PubMed  CAS  Google Scholar 

  113. Park DS, Morris EJ, Stefanis L, et al. Multiple pathways of neuronal death induced by DNAdamaging agents, NGF deprivation, and oxidative stress. J Neurosci 1998;18:830–840.

    PubMed  CAS  Google Scholar 

  114. Lieberthal W, Triaca V, Koh JS, Pagano PJ, Levine JS. Role of superoxide in apoptosis induced by growth factor withdrawal. Am J Physiol 1998;275(5 Pt 2):F691–F702.

    PubMed  CAS  Google Scholar 

  115. Russell JW, Kaminsky A. Oxidative injury in diabetic neuropathy, in Nutrition and Diabetes: Pathophysiology and Management (Opara E, ed.), by courtesy of Taylor & Francis Group, LLC, Boca Raton, FL, 2006;381–397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Russell, J.W., Cowell, R.M., Feldman, E.L. (2007). Neuronal and Schwann Cell Death in Diabetic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics