Skip to main content

Genomics and Polycystic Ovary Syndrome (PCOS): The Use of Microarray Analysis to Identify New Candidate Genes

  • Chapter
Genomics in Endocrinology

Abstract

Transcriptome profiling offers a potentially valuable approach to the identification of candidate genes and pathways that contribute to complex diseases. Here we describe the application of microarray analysis of human theca cells and ovaries to the understanding of the pathophysiology of polycystic ovary syndrome (PCOS), a complex reproductive endocrine and metabolic disorder, and the investigation of selected candidate genes derived from these analyses with respect to association and linkage to PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Stein, I. & Leventhal, M. (1935). Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29, 181–91.

    Google Scholar 

  • Franks, S. (1995). Polycystic ovary syndrome [published erratum appears in N Engl J Med 1995 Nov 23; 333(21):1435] [see comments]. N Engl J Med 333, 853–61.

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann, D. A. (2005). Polycystic ovary syndrome. N Engl J Med 352, 1223–36.

    Article  PubMed  CAS  Google Scholar 

  • Legro, R. S. (2001). Polycystic ovary syndrome: the new millenium. Mol Cell Endocrinol 184, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Dunaif, A., Givens, J., Haseltine, F. & Merriam, G. (1992). The Polycystic Ovary Syndrome. Blackwell Scientific, Cambridge.

    Google Scholar 

  • Moran, C., Knochenhauer, E., Boots, L. R. & Azziz, R. (1999). Adrenal androgen excess in hyperandrogenism: relation to age and body mass. Fertil Steril 71, 671–4.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Woods, K. S., Bartolucci, A. A. & Azziz, R. (2005). Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 62, 644–9.

    Article  CAS  Google Scholar 

  • Legro, R. S., Spielman, R., Urbanek, M., Driscoll, D., Strauss, J. F. III & Dunaif, A. (1998). Phenotype and genotype in polycystic ovary syndrome. Recent Prog Horm Res 53, 217–56.

    PubMed  CAS  Google Scholar 

  • Gilling-Smith, C., Willis, D. S., Beard, R. W. & Franks, S. (1994). Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab 79, 1158–65.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, V. L., Legro, R. S., Strauss, J. F. III & McAllister, J. M. (1999). Augmented androgen production is a stable steroidogenic phenotype of propogated theca cells from polycystic ovaries. Mol Endocrinol 13, 946–57.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, V. L., Qin Kn, K. N., Rosenfield, R. L., Wood, J. R., Penning, T. M., Legro, R. S., Strauss, J. F. III & McAllister, J. M. (2001). The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 86, 5925–33.

    Article  PubMed  CAS  Google Scholar 

  • Doi, S. A., Towers, P. A., Scott, C. J. & Al-Shoumer, K. A. (2005). PCOS: an ovarian disorder that leads to dysregulation in the hypothalamic-pituitary-adrenal axis? Eur J Obstet Gynecol Reprod Biol 118, 4–16.

    Article  PubMed  CAS  Google Scholar 

  • Zeleznik, A. J. (2004). The physiology of follicle selection. Reprod Biol Endocrinol 2, 31.

    Article  PubMed  Google Scholar 

  • van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.

    Article  PubMed  CAS  Google Scholar 

  • McGee, E. A. & Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21, 200–14.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P. G. & Glister, C. (2001). Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 121, 503–12.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M., McGee, E. A., Min, G., Klein, C., Rose, U. M., van Duin, M. & Hsueh, A. J. (1999). Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140, 1236–44.

    Article  PubMed  CAS  Google Scholar 

  • Juengel, J. L. & McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 11, 143–60.

    PubMed  CAS  Google Scholar 

  • Franks, S., Mason, H. & Willis, D. (2000). Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 163, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann, D. A., Barnes, R. B. & Rosenfield, R. L. (1995). Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 16, 322–53.

    Article  PubMed  CAS  Google Scholar 

  • Waldstreicher, J., Santoro, N. F., Hall, J. E., Filicori, M. & Crowley, W. F., Jr. (1988). Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab 66, 165–72.

    Article  PubMed  CAS  Google Scholar 

  • McCartney, C. R., Eagleson, C. A. & Marshall, J. C. (2002). Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med 20, 317–26.

    Article  PubMed  CAS  Google Scholar 

  • Ledee-Bataille, N., Lapree-Delage, G., Taupin, J. L., Dubanchet, S., Taieb, J., Moreau, J. F. & Chaouat, G. (2001). Follicular fluid concentration of leukaemia inhibitory factor is decreased among women with polycystic ovarian syndrome during assisted reproduction cycles. Hum Reprod 16, 2073–8.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira Filho, F. L., Baracat, E. C., Lee, T. H., Suh, C. S., Matsui, M., Chang, R. J., Shimasaki, S. & Erickson, G. F. (2002). Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 87, 1337–44.

    Article  PubMed  CAS  Google Scholar 

  • Pigny, P., Merlen, E., Robert, Y., Cortet-Rudelli, C., Decanter, C., Jonard, S. & Dewailly, D. (2003). Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 88, 5957–62.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs, S. A., Hardy, K., Da Silva-Buttkus, P., Stark, J., Webber, L. J., Flanagan, A. M., Themmen, A. P., Visser, J. A., Groome, N. P. & Franks, S. (2005). Anti-mullerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab 90, 5536–43.

    Article  PubMed  CAS  Google Scholar 

  • Welt, C. K., Taylor, A. E., Fox, J., Messerlian, G. M., Adams, J. M. & Schneyer, A. L. (2005). Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 90, 5582–7.

    Article  PubMed  CAS  Google Scholar 

  • Welt, C. K., Taylor, A. E., Martin, K. A. & Hall, J. E. (2002). Serum inhibin B in polycystic ovary syndrome: regulation by insulin and luteinizing hormone. J Clin Endocrinol Metab 87, 5559–65.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, T., Sidis, Y., Welt, C., Lambert-Messerlian, G., Fox, J., Taylor, A. & Schneyer, A. (2001). Dynamics of inhibin subunit and follistatin mRNA during development of normal and polycystic ovary syndrome follicles. J Clin Endocrinol Metab 86, 4206–15.

    Article  PubMed  CAS  Google Scholar 

  • Dunaif, A. (1997). Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 18, 774–800.

    Article  PubMed  CAS  Google Scholar 

  • Dunaif, A. (1999). Insulin action in the polycystic ovary syndrome. Endocrinol Metab Clin North Am 28, 341–59.

    Article  PubMed  CAS  Google Scholar 

  • Dunaif, A., Xia, J., Book, C. B., Schenker, E. & Tang, Z. (1995). Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 96, 801–10.

    Article  PubMed  CAS  Google Scholar 

  • Dunaif, A., Wu, X., Lee, A. & Diamanti-Kandarakis, E. (2001). Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 281, E392–9.

    PubMed  CAS  Google Scholar 

  • Corbould, A., Kim, Y. B., Youngren, J. F., Pender, C., Kahn, B. B., Lee, A. & Dunaif, A. (2005). Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab 288, E1047–54.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, C. G. (1999). The epidemiology of polycystic ovary syndrome. Prevalence and associated disease risks. Endocrinol Metab Clin North Am 28, 247–63.

    Article  PubMed  CAS  Google Scholar 

  • Legro, R. S., Driscoll, D., Strauss, J. F., III, Fox, J. & Dunaif, A. (1998). Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A 95, 14956–60.

    Article  PubMed  CAS  Google Scholar 

  • Kahsar-Miller, M. D., Nixon, C., Boots, L. R., Go, R. C. & Azziz, R. (2001). Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 75, 53–8.

    Article  PubMed  CAS  Google Scholar 

  • Franks, S., Gharani, N. & McCarthy, M. (2001). Candidate genes in polycystic ovary syndrome. Hum Reprod Update 7, 405–10.

    Article  PubMed  CAS  Google Scholar 

  • Legro, R. S. & Strauss, J. F., III (2002). Molecular progress in infertility: polycystic ovary syndrome. Fertil Steril 78, 569–76.

    Article  PubMed  Google Scholar 

  • Roldan, B., San Millan, J. L. & Escobar-Morreale, H. F. (2004). Genetic basis of metabolic abnormalities in polycystic ovary syndrome: implications for therapy. Am J Pharmacogenomics 4, 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, D., Haber, R. S. & Dunaif, A. (1993). Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 264, E197–202.

    PubMed  CAS  Google Scholar 

  • Jakimiuk, A. J., Weitsman, S. R., Navab, A. & Magoffin, D. A. (2001). Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 86, 1318–23.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, J. E., Jakubowicz, D. J., de Vargas, A. F., Brik, C., Quintero, N. & Medina, F. (1998). Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83, 2001–5.

    Article  PubMed  CAS  Google Scholar 

  • Wickenheisser, J. K., Quinn, P. G., Nelson, V. L., Legro, R. S., Strauss, J. F., III & McAllister, J. M. (2000). Differential activity of the cytochrome P450 17α-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 85, 2304–11.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. R., Nelson-Degrave, V. L., Jansen, E., McAllister, J. M., Mosselman, S. & Strauss, J. F., III (2005). Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. Physiol Genomics 20, 233–43.

    PubMed  CAS  Google Scholar 

  • Wood, J. R., Nelson, V. L., Ho, C., Jansen, E., Wang, C. Y., Urbanek, M., McAllister, J. M., Mosselman, S. & Strauss, J. F., III (2003). The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem 278, 26380–90.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, E., Laven, J. S., Dommerholt, H. B., Polman, J., van Rijt, C., van den Hurk, C., Westland, J., Mosselman, S. & Fauser, B. C. (2004). Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 18, 3050–63.

    Article  PubMed  CAS  Google Scholar 

  • Diao, F. Y., Xu, M., Hu, Y., Li, J., Xu, Z., Lin, M., Wang, L., Zhou, Y., Zhou, Z., Liu, J. & Sha, J. (2004). The molecular characteristics of polycystic ovary syndrome (PCOS) ovary defined by human ovary cDNA microarray. J Mol Endocrinol 33, 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Oksjoki, S., Soderstrom, M., Inki, P., Vuorio, E. & Anttila, L. (2005). Molecular profiling of polycystic ovaries for markers of cell invasion and matrix turnover. Fertil Steril 83, 937–44.

    Article  PubMed  CAS  Google Scholar 

  • Chuaqui, R. F., Bonner, R. F., Best, C. J., Gillespie, J. W., Flaig, M. J., Hewitt, S. M., Phillips, J. L., Krizman, D. B., Tangrea, M. A., Ahram, M., Linehan, W. M., Knezevic, V. & Emmert-Buck, M. R. (2002). Post-analysis follow-up and validation of microarray experiments. Nat Genet 32 Suppl, 509–14.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl, 490–5.

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush, J. (2002). Microarray data normalization and transformation. Nat Genet 32 Suppl, 496–501.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, A. J., van Laar, R. K., Tothill, R. W. & Bowtell, D. D. (2002). Options available—from start to finish—for obtaining data from DNA microarrays II. Nat Genet 32 Suppl, 481–9.

    Article  PubMed  CAS  Google Scholar 

  • Sharov, A. A., Dudekula, D. B. & Ko, M. S. (2005). A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21, 2548–9.

    Article  PubMed  CAS  Google Scholar 

  • Attia, G. R., Dooley, C. A., Rainey, W. E. & Carr, B. R. (2000). Transforming growth factor beta inhibits steroidogenic acute regulatory (StAR) protein expression in human ovarian thecal cells. Mol Cell Endocrinol 170, 123–9.

    Article  PubMed  CAS  Google Scholar 

  • Christenson, L. K., Johnson, P. F., McAllister, J. M. & Strauss, J. F., III (1999). CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene. J Biol Chem 274, 26591–8.

    Article  PubMed  CAS  Google Scholar 

  • Devoto, L., Christenson, L. K., McAllister, J. M., Makrigiannakis, A. & Strauss, J. F., III (1999). Insulin and insulin-like growth factor-I and -II modulate human granulosa-lutein cell steroidogenesis: enhancement of steroidogenic acute regulatory protein (StAR) expression. Mol Hum Reprod 5, 1003–10.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G., Garmey, J. C. & Veldhuis, J. D. (2000). Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha- hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology 141, 2735–42.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. R. & Strauss, J. F., III (2002). Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord 3, 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Molkentin, J. D. (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275, 38949–52.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, J. J. & Viger, R. S. (2003). Novel roles for GATA transcription factors in the regulation of steroidogenesis. J Steroid Biochem Mol Biol 85, 291–8.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, P., Saner, K., Mayhew, B. & Rainey, W. E. (2003). GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. Endocrinology 144, 4285–8.

    Article  PubMed  CAS  Google Scholar 

  • Saner, K. J., Suzuki, T., Sasano, H., Pizzey, J., Ho, C., Strauss, J. F., III, Carr, B. R. & Rainey, W. E. (2005). Steroid sulfotransferase 2A1 gene transcription is regulated by steroidogenic factor 1 and GATA-6 in the human adrenal. Mol Endocrinol 19, 184–97.

    Article  PubMed  CAS  Google Scholar 

  • Fluck, C. E. & Miller, W. L. (2004). GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. Mol Endocrinol 18, 1144–57.

    Article  PubMed  CAS  Google Scholar 

  • Ho, C. K., Wood, J. R., Stewart, D. R., Ewens, K., Ankener, W., Wickenheisser, J., Nelson-Degrave, V., Zhang, Z., Legro, R. S., Dunaif, A., McAllister, J. M., Spielman, R. & Strauss, J. F., III (2005). Increased transcription and increased mRNA stability contribute to increased GATA6 mRNA abundance in PCOS theca cells. J Clin Endocrinol Metab 90, 6596–6602.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M. E., Quadro, L. & Blaner, W. S. (2001). Studies of vitamin A metabolism in mouse model systems. Bioessays 23, 409–19.

    Article  PubMed  CAS  Google Scholar 

  • Napoli, J. L. (1996).Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol 80, S52–62.

    Article  PubMed  CAS  Google Scholar 

  • Chetyrkin, S. V., Belyaeva, O. V., Gough, W. H. & Kedishvili, N. Y. (2001). Characterization of a novel type of human microsomal 3alpha-hydroxysteroid dehydrogenase: unique tissue distribution and catalytic properties. J Biol Chem 276, 22278–86.

    Article  PubMed  CAS  Google Scholar 

  • Rexer, B. N., Zheng, W. L. & Ong, D. E. (2001). Retinoic acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells. Cancer Res 61, 7065–70.

    PubMed  CAS  Google Scholar 

  • Livera, G., Rouiller-Fabre, V., Pairault, C., Levacher, C. & Habert, R. (2002). Regulation and perturbation of testicular functions by vitamin A. Reproduction 124, 173–80.

    Article  PubMed  CAS  Google Scholar 

  • Minegishi, T., Hirakawa, T., Kishi, H., Abe, K., Ibuki, Y. & Miyamoto, K. (2000). Retinoic acid (RA) represses follicle stimulating hormone (FSH)-induced luteinizing hormone (LH) receptor in rat granulosa cells. Arch Biochem Biophys 373, 203–10.

    Article  PubMed  CAS  Google Scholar 

  • Minegishi, T., Hirakawa, T., Kishi, H., Abe, K., Tano, M., Abe, Y. & Miyamoto, K. (2000). The mechanisms of retinoic acid-induced regulation on the follicle-stimulating hormone receptor in rat granulosa cells. Biochim Biophys Acta 1495, 203–11.

    Article  PubMed  CAS  Google Scholar 

  • Wickenheisser, J. K., Nelson-DeGrave, V. L., Hendricks, K. L., Legro, R. S., Strauss, J. F., III & McAllister, J. M. (2005). Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab 90, 4858–65.

    Article  PubMed  CAS  Google Scholar 

  • Clagett-Dame, M. & DeLuca, H. F. (2002). The role of vitamin a in Mammalian reproduction and embryonic development. Annu Rev Nutr 22, 347–81.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, C. R., Carvalheira, J. B., Lima, M. H., Zimmerman, S. F., Caperuto, L. C., Amanso, A., Gasparetti, A. L., Meneghetti, V., Zimmerman, L. F., Velloso, L. A. & Saad, M. J. (2003). Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology 144, 638–47.

    Article  PubMed  CAS  Google Scholar 

  • Munir, I., Yen, H. W., Geller, D. H., Torbati, D., Bierden, R. M., Weitsman, S. R., Agarwal, S. K. & Magoffin, D. A. (2004). Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology 145, 175–83.

    Article  PubMed  CAS  Google Scholar 

  • Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. (2003). TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–7.

    Article  PubMed  CAS  Google Scholar 

  • Mei, F. C., Qiao, J., Tsygankova, O. M., Meinkoth, J. L., Quilliam, L. A. & Cheng, X. (2002). Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 277, 11497–504.

    Article  PubMed  CAS  Google Scholar 

  • Urbanek, M., Woodroffe, A., Ewens, K. G., Diamanti-Kandarakis, E., Legro, R. S., Strauss, J. F., III Dunaif, A. & Spielman, R. S. (2005). Candidate Gene Region for Polycystic Ovary Syndrome (PCOS) on Chromosome 19p13.2. J Clin Endocrinol Metab 90, 6623–6629.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Wood, J.R., Strauss, J.F. (2008). Genomics and Polycystic Ovary Syndrome (PCOS): The Use of Microarray Analysis to Identify New Candidate Genes. In: Handwerger, S., Aronow, B. (eds) Genomics in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-309-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-309-7_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-651-1

  • Online ISBN: 978-1-59745-309-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics