Skip to main content

Techniques for MR Myocardial Perfusion Imaging

  • Chapter
  • 2309 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Outside the field of magnetic resonance imaging (MRI), most techniques for myocardial perfusion imaging rely on the direct detection of injected tracers. Examples are tracers that emit γ-rays for single photon emission tomography or tracers that scatter ultrasound waves, such as injected gas-filled bubbles. With MRI, blood-borne contrast agents can be used to assess myocardial perfusion. The presence of the contrast agent in tissue is detected through the effects of the contrast agent on the signal from 1H nuclei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE. Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging 1999;10:676–685.

    Article  PubMed  CAS  Google Scholar 

  2. Chen Z, Prato FS, McKenzie CA. T 1 fast acquisition relaxation mapping (T 1-FARM): an optimised reconstruction. IEEE Trans Med Imaging 1998;17:155–160.

    Article  PubMed  CAS  Google Scholar 

  3. Tsekos NV, Zhang Y, Merkle H, et al. Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn Reson Med 1995;34:530–536.

    Article  PubMed  CAS  Google Scholar 

  4. Bellamy DD, Pereira RS, McKenzie CA, et al. Gd-DTPA bolus tracking in the myocardium using T 1 fast acquisition relaxation mapping (T 1 FARM). Magn Reson Med 2001;46:555–564.

    Article  PubMed  CAS  Google Scholar 

  5. Mai VM, Chen Q, Bankier AA, et al. Imaging pulmonary blood flow and perfusion using phase-sensitive selective inversion recovery. Magn Reson Med 2000;43:793–795.

    Article  PubMed  CAS  Google Scholar 

  6. Slavin GS, Wolff SD, Gupta SN, Foo TK. First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 2001;219:258–263.

    PubMed  CAS  Google Scholar 

  7. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204:373–384.

    PubMed  CAS  Google Scholar 

  8. Klocke FJ, Simonetti OP, Judd RM, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 2001;104:2412–2416.

    Article  PubMed  CAS  Google Scholar 

  9. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 2003;226:717–722.

    Article  PubMed  Google Scholar 

  10. Scheffler K, Hennig J. T 1 quantification with inversion recovery TrueFISP. Magn Reson Med 2001;45:720–723.

    Article  PubMed  CAS  Google Scholar 

  11. Schmitt P, Griswold MA, Jakob PM, et al. Inversion recovery TrueFISP: quantification of T(1), T(2), and spin density. Magn Reson Med 2004;51:661–667.

    Article  PubMed  Google Scholar 

  12. Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J. Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with TurboFLASH imaging. Eur Radiol 2004;14:409–416.

    Article  PubMed  Google Scholar 

  13. Edelman RR, Li W. Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 1994;190:771–777.

    PubMed  CAS  Google Scholar 

  14. Panting J, Gatehouse P, Yang G, et al. Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 2001;13:192–200.

    Article  PubMed  CAS  Google Scholar 

  15. Epstein FH, London JF, Peters DC, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482–491.

    Article  PubMed  Google Scholar 

  16. Elkington AG, Gatehouse PD, Cannell TM, et al. Comparison of hybrid echo-planar imaging and FLASH myocardial perfusion cardiovascular MR imaging. Radiology 2005;235:237–243.

    Article  PubMed  Google Scholar 

  17. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  18. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–962.

    Article  PubMed  CAS  Google Scholar 

  19. Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 2001;3:1–9.

    Article  PubMed  CAS  Google Scholar 

  20. Kroll K, Wilke N, Jerosch-Herold M, et al. Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol (Heart Circ Physiol) 1996;40:H1643–H1655.

    Google Scholar 

  21. Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging. Magn Reson Med 2002;48:493–501.

    Article  PubMed  Google Scholar 

  22. Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression. Magn Reson Med 2004;52:310–320.

    Article  PubMed  Google Scholar 

  23. Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999;42:813–828.

    Article  PubMed  CAS  Google Scholar 

  24. Di Bella EV, Wu YJ, Alexander AL, Parker DL, Green D, McGann CJ. Comparison of temporal filtering methods for dynamic contrast MRI myocardial perfusion studies. Magn Reson Med 2003;49:895–902.

    Article  PubMed  Google Scholar 

  25. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005;53:684–691.

    Article  PubMed  Google Scholar 

  26. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004;19:758–770.

    Article  PubMed  Google Scholar 

  27. Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39–45.

    Article  PubMed  Google Scholar 

  28. Kim D, Cernicanu A, Axel L. Multi-Slice, First-pass myocardial perfusion MRI with undistorted arterial input function and higher myocardial enhancement at 3 T. Paper presented at: Scientific Sessions of the International Society of Magnetic Resonance in Medicine (ISMRM); May 11, 2005; Miami Beach, FL.

    Google Scholar 

  29. Köstler H, Ritter C, Baunach D, et al. Determination of the arterial input function in high dose radial myocardial perfusion imaging. Paper presented at: Scientific Sessions of the International Society of Magnetic Resonance in Medicine (ISMRM); May 11, 2005; Miami Beach, FL.

    Google Scholar 

  30. Christian TF, Rettmann DW, Aletras AH, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677–684.

    Article  PubMed  Google Scholar 

  31. Li X, Huang W, Yankeelov TE, Tudorica A, Rooney WD, Springer CS Jr. Shutter-speed analysis of contrast reagent bolus-tracking data: preliminary observations in benign and malignant breast disease. Magn Reson Med 2005;53:724–729.

    Article  PubMed  Google Scholar 

  32. Donahue KM, Burstein D. Proton exchange rates in myocardial tissue with Gd-DTPA administration. New York: 1993. Proceedings of the 1993 conference of the Society of Magnetic Resonance in Medicine (SMRM), Berkeley, CA. Conference location was New York, NY.

    Google Scholar 

  33. Donahue KM, Weisskoff RM, Burstein D. Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging 1997;7:102–110.

    Article  PubMed  CAS  Google Scholar 

  34. Donahue KM, Weisskoff RM, Chesler DA, et al. Improving MR quantification of regional blood volume with intravascular T 1 contrast agents: accuracy, precision, and water exchange. Magn Reson Med 1996;36:858–867.

    Article  PubMed  CAS  Google Scholar 

  35. Landis CS, Li X, Telang FW, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563–574.

    Article  PubMed  CAS  Google Scholar 

  36. Wacker CM, Fidler F, Dueren C, et al. Quantitative assessment of myocardial perfusion with a spin-labeling technique: preliminary results in patients with coronary artery disease. J Magn Reson Imaging 2003;18:555–560.

    Article  PubMed  Google Scholar 

  37. Waller C, Kahler E, Hiller KH, et al. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000;215:189–197.

    PubMed  CAS  Google Scholar 

  38. Reeder SB, Atalay MK, McVeigh ER, Zerhouni EA, Forder JR. Quantitative cardiac perfusion: a noninvasive spin-labeling method that exploits coronary vessel geometry. Radiology 1996;200:177–184.

    PubMed  CAS  Google Scholar 

  39. Zhang H, Shea SM, Park V, et al. Accurate myocardial T 1 measurements: toward quantification of myocardial blood flow with arterial spin labeling. Magn Reson Med 2005;53:1135–1142.

    Article  PubMed  Google Scholar 

  40. Johansson E, Olsson LE, Mansson S, et al. Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med 2004;52:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  41. Johansson E, Mansson S, Wirestam R, et al. Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med 2004;51:464–472.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jerosch-Herold, M. (2008). Techniques for MR Myocardial Perfusion Imaging. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics