Skip to main content

Assessment of Pulmonary Venous Anatomy

  • Chapter
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2305 Accesses

Abstract

The development of radio-frequency ablation for the treatment of atrial fibrillation has led to increased interest in the accurate determination of pulmonary vein anatomy to help plan the procedure and to monitor for postablation stenosis. Contrast-enhanced magnetic resonance angiography readily demonstrates the pulmonary veins and is the method of choice for these required serial imaging studies. In this chapter, we review the techniques for pulmonary vein imaging, normal and variant pulmonary vein anatomy, the utility of imaging prior to and after atrial fibrillation ablation, and congenital pulmonary vein anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prince MR, Narasimham DL, Stanley JC, et al. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 1995;197:785–792.

    PubMed  CAS  Google Scholar 

  2. Wittkampf FH, Vonken EJ, Derksen R, et al. Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation 2003;107:21–23.

    Article  PubMed  Google Scholar 

  3. Hauser TH, Yeon SB, McClennen S, et al. A method for the determination of proximal pulmonary vein size using contrast-enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 2004;6:927–936.

    Article  PubMed  Google Scholar 

  4. Hauser TH, Yeon SB, McClennen S, et al. Subclinical pulmonary vein narrowing after ablation for atrial fibrillation. Heart 2005;91:672–673.

    Article  PubMed  CAS  Google Scholar 

  5. Mansour M, Holmvang G, Sosnovik D, et al. Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:387–393.

    Article  PubMed  Google Scholar 

  6. Mlcochova H, Tintera J, Porod V, Peichl P, Cihak R, Kautzner J. Magnetic resonance angiography of pulmonary veins: implications for catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol 2005;28:1073–1080.

    Article  PubMed  Google Scholar 

  7. Syed MA, Peters DC, Rashid H, Arai AE. Pulmonary vein imaging: comparison of 3D magnetic resonance angiography with 2D cine MRI for characterizing anatomy and size. J Cardiovasc Magn Reson 2005;7:355–360.

    Article  PubMed  Google Scholar 

  8. Tamborero D, Mont L, Nava S, et al. Incidence of pulmonary vein stenosis in patients submitted to atrial fibrillation ablation: a comparison of the selective segmental ostial ablation vs the circumferential pulmonary veins ablation. J Interv Card Electrophysiol 2005;14:21–25.

    Article  PubMed  Google Scholar 

  9. Tsao HM, Wu MH, Huang BH, et al. Morphologic remodeling of pulmonary veins and left atrium after catheter ablation of atrial fibrillation: insight from long-term follow-up of three-dimensional magnetic resonance imaging. J Cardiovasc Electrophysiol 2005;16:7–12.

    Article  PubMed  Google Scholar 

  10. Vonken EP, Velthuis BK, Wittkampf FH, Rensing BJ, Derksen R, Cramer MJ. Contrast-enhanced MRA and 3D visualization of pulmonary venous anatomy to assist radiofrequency catheter ablation. J Cardiovasc Magn Reson 2003;5:545–551.

    Article  PubMed  CAS  Google Scholar 

  11. Lickfett L, Dickfeld T, Kato R, et al. Changes of pulmonary vein orifice size and location throughout the cardiac cycle: dynamic analysis using magnetic resonance cine imaging. J Cardiovasc Electrophysiol 2005;16:582–588.

    Article  PubMed  Google Scholar 

  12. Hauser TH, Yeon SB, McClennen S, et al. Variability in pulmonary vein anatomy during the cardiac cycle. Society for Cardiovascular Magnetic Resonance; 2005.

    Google Scholar 

  13. Schoenberg SO, Bock M, Floemer F, et al. High-resolution pulmonary arterio-and venography using multiple-bolus multiphase 3D-Gd-mRA. J Magn Reson Imaging 1999;10:339–346.

    Article  PubMed  CAS  Google Scholar 

  14. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 1996;201:705–710.

    PubMed  CAS  Google Scholar 

  15. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 1997;205:137–146.

    PubMed  CAS  Google Scholar 

  16. Blom NA, Gittenberger-de Groot AC, Jongeneel TH, DeRuiter MC, Poelmann RE, Ottenkamp J. Normal development of the pulmonary veins in human embryos and formulation of a morphogenetic concept for sinus venosus defects. Am J Cardiol 2001;87:305–309.

    Article  PubMed  CAS  Google Scholar 

  17. Moore KL. The developing human. Philadelphia: Saunders; 1988.

    Google Scholar 

  18. Webb S, Kanani M, Anderson RH, Richardson MK, Brown NA. Development of the human pulmonary vein and its incorporation in the morphologically left atrium. Cardiol Young 2001;11:632–642.

    Article  PubMed  CAS  Google Scholar 

  19. Kato R, Lickfett L, Meininger G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 2003;107:2004–2010.

    Article  PubMed  Google Scholar 

  20. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 1995;155:469–473.

    Article  PubMed  CAS  Google Scholar 

  21. Heart disease and strokestatistics—2004 Update. Dallas, TX: American Heart Association.

    Google Scholar 

  22. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 1998;98:946–952.

    PubMed  CAS  Google Scholar 

  23. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983–988.

    Article  PubMed  CAS  Google Scholar 

  24. Hauser TH, Pinto DS, Josephson ME, Zimetbaum P. Early recurrence of arrhythmia in patients taking amiodarone or class 1C agents for treatment of atrial fibrillation or atrial flutter. Am J Cardiol 2004;93:1173–1176.

    Article  PubMed  CAS  Google Scholar 

  25. Singh BN, Singh SN, Reda DJ, et al. Amiodarone vs sotalol for atrial fibrillation. N Engl J Med 2005;352:1861–1872.

    Article  PubMed  CAS  Google Scholar 

  26. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med 2000;342:913–920.

    Article  PubMed  CAS  Google Scholar 

  27. Hauser TH, Pinto DS, Josephson ME, Zimetbaum P. Safety and feasibility of a clinical pathway for the outpatient initiation of antiarrhythmic medications in patients with atrial fibrillation or atrial flutter. Am J Cardiol 2003;91:1437–1441.

    Article  PubMed  Google Scholar 

  28. Hassink RJ, Aretz HT, Ruskin J, Keane D. Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation. J Am Coll Cardiol 2003;42:1108–1114.

    Article  PubMed  Google Scholar 

  29. Arora R, Verheule S, Scott L, et al. Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 2003;107:1816–1821.

    Article  PubMed  Google Scholar 

  30. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659–666.

    Article  PubMed  CAS  Google Scholar 

  31. Pappone C, Rosanio S, Oreto G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia. A new anatomic approach for curing atrial fibrillation. Circulation 2000;102:2619–2628.

    PubMed  CAS  Google Scholar 

  32. Arentz T, von Rosenthal J, Blum T, et al. Feasibility and safety of pulmonary vein isolation using a new mapping and navigation system in patients with refractory atrial fibrillation. Circulation 2003;108:2484–2490.

    Article  PubMed  Google Scholar 

  33. Haissaguerre M, Jais P, Shah DC, et al. Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 2000;101:1409–1417.

    PubMed  CAS  Google Scholar 

  34. Oral H, Knight BP, Ozaydin M, et al. Segmental ostial ablation to isolate the pulmonary veins during atrial fibrillation: feasibility and mechanistic insights. Circulation 2002;106:1256–1262.

    Article  PubMed  Google Scholar 

  35. Pappone C, Rosanio S, Augello G, et al. Mortality, morbidity, and quality of life after circumferential pulmonary vein ablation for atrial fibrillation: outcomes from a controlled nonrandomized long-term study. J Am Coll Cardiol 2003;42:185–197.

    Article  PubMed  Google Scholar 

  36. Marine JE, Dong J, Calkins H. Catheter ablation therapy for atrial fibrillation. Prog Cardiovasc Dis 2005;48:178–192.

    Article  PubMed  Google Scholar 

  37. Lin WS, Prakash VS, Tai CT, et al. Pulmonary vein morphology in patients with paroxysmal atrial fibrillation initiated by ectopic beats originating from the pulmonary veins: implications for catheter ablation. Circulation 2000;101:1274–1281.

    PubMed  CAS  Google Scholar 

  38. Calkins H. Three dimensional mapping of atrial fibrillation: techniques and necessity. J Interv Card Electrophysiol 2005;13(suppl 1):53–59.

    Article  PubMed  Google Scholar 

  39. Scanavacca MI, D’Avila A, Parga J, Sosa E. Left atrial-esophageal fistula following radiofrequency catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:960–962.

    Article  PubMed  Google Scholar 

  40. Pappone C, Oral H, Santinelli V, et al. Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation 2004;109:2724–2726.

    Article  PubMed  Google Scholar 

  41. Cummings JE, Schweikert RA, Saliba WI, et al. Assessment of temperature, proximity, and course of the esophagus during radiofrequency ablation within the left atrium. Circulation 2005;112:459–464.

    Article  PubMed  Google Scholar 

  42. Redfearn DP, Trim GM, Skanes AC, et al. Esophageal temperature monitoring during radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2005;16:589–593.

    Article  PubMed  Google Scholar 

  43. Lemola K, Sneider M, Desjardins B, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation 2004;110:3655–3660.

    Article  PubMed  Google Scholar 

  44. Tsao HM, Wu MH, Higa S, et al. Anatomic relationship of the esophagus and left atrium: implication for catheter ablation of atrial fibrillation. Chest 2005;128:2581–2587.

    Article  PubMed  Google Scholar 

  45. Cury RC, Abbara S, Schmidt S, et al. Relationship of the esophagus and aorta to the left atrium and pulmonary veins: Implications for catheter ablation of atrial fibrillation. Heart Rhythm 2005;2:1317–1323.

    Article  PubMed  Google Scholar 

  46. Sanchez-Quintana D, Cabrera JA, Climent V, Farre J, Mendonca MC, Ho SY. Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 2005;112:1400–1405.

    Article  PubMed  Google Scholar 

  47. Monnig G, Wessling J, Juergens KU, et al. Further evidence of a close anatomical relation between the oesophagus and pulmonary veins. Europace 2005;7:540–545.

    Article  PubMed  Google Scholar 

  48. Good E, Oral H, Lemola K, et al. Movement of the esophagus during left atrial catheter ablation for atrial fibrillation. J Am Coll Cardiol 2005;46:2107–2110.

    Article  PubMed  Google Scholar 

  49. Moak J, Moore H, Lee S, et al. Case report: pulmonary vein stenosis following RF ablation of paroxysmal atrial fibrillation: successful treatment with balloon dilation. J Interv Card Electrophysiol 2000;4:621–631.

    Article  PubMed  CAS  Google Scholar 

  50. Saad EB, Rossillo A, Saad CP, et al. Pulmonary vein stenosis after radiofrequency ablation of atrial fibrillation: functional characterization, evolution, and influence of the ablation strategy. Circulation 2003;108:3102–3107.

    Article  PubMed  Google Scholar 

  51. Saad EB, Marrouche NF, Saad CP, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med 2003;138:634–638.

    PubMed  Google Scholar 

  52. Scanvacca M, Kajita L, Vieira M, Sosa E. Pulmonary vein stenosis complicating catheter ablation of focal atrial fibrillation. J Cardiovasc Electrophysiol 2000;1:677–681.

    Article  Google Scholar 

  53. Yang M, Akbari H, Reddy GP, Higgins CB. Identification of pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation using MRI. J Comput Assist Tomogr 2001;25:34–35.

    Article  PubMed  CAS  Google Scholar 

  54. Arentz T, Jander N, von Rosenthal J, et al. Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. Eur Heart J 2003;24:963–969.

    Article  PubMed  Google Scholar 

  55. Dill T, Neumann T, Ekinci O, et al. Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 2003;107:845–850.

    Article  PubMed  Google Scholar 

  56. Taylor GW, Kay GN, Zheng X, Bishop S, Ideker RE. Pathological effects of extensive radiofrequency energy applications in the pulmonary veins in dogs. Circulation 2000;101:1736–1742.

    PubMed  CAS  Google Scholar 

  57. Kluge A, Dill T, Ekinci O, et al. Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 2004;126:428–437.

    Article  PubMed  Google Scholar 

  58. Arentz T, Weber R, Jander N, et al. Pulmonary haemodynamics at rest and during exercise in patients with significant pulmonary vein stenosis after radiofrequency catheter ablation for drug resistant atrial fibrillation. Eur Heart J 2005;26:1410–1414.

    Article  PubMed  Google Scholar 

  59. Qureshi AM, Prieto LR, Latson LA, et al. Transcatheter angioplasty for acquired pulmonary vein stenosis after radiofrequency ablation. Circulation 2003;108:1336–1342.

    Article  PubMed  Google Scholar 

  60. Bowman AW, Kovacs SJ. Prediction and assessment of the time-varying effective pulmonary vein area via cardiac MRI and Doppler echocardiography. Am J Physiol Heart Circ Physiol 2005;288:H280–H286.

    Article  PubMed  CAS  Google Scholar 

  61. Wood MA, Wittkamp M, Henry D, et al. A comparison of pulmonary vein ostial anatomy by computerized tomography, echocardiography, and venography in patients with atrial fibrillation having radiofrequency catheter ablation. Am J Cardiol 2004;93:49–53.

    Article  PubMed  Google Scholar 

  62. Hauser TH, Essebag V, Baldessin F, et al. Larger pulmonary vein cross-sectional area is associated with recurrent atrial fibrillation after pulmonary vein isolation. Circulation 2005;112(S):II-555.

    Google Scholar 

  63. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–1453.

    Article  PubMed  CAS  Google Scholar 

  64. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215–223.

    PubMed  CAS  Google Scholar 

  65. Judd RM, Lugo-Olivieri CH, Arai M, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-days-old reperfused canine infarcts. Circulation 1995;92:1902–1910.

    PubMed  CAS  Google Scholar 

  66. Peters DC, Wylie JV, Kissinger KV, et al. Detection of pulmonary vein ablation with high resolution MRI. Society for Cardiovascular Magnetic Resonance; 2006.

    Google Scholar 

  67. Krabill KA, Lucas RV. Abnormal pulmonary venous connections. In: Emmanouilides GC, Riemenschneider TA, Allen HD, et al., eds. Moss and Adams’ heart disease in infants, children and adolescents. Baltimore, MD: Williams and Wilkins; 1995:838.

    Google Scholar 

  68. Friedman WF, Silverman N. Congenital heart disease in infancy and childhood. In: Braunwald E, Zipes DP, Libby P, eds. Heart disease. Philadelphia: Saunders; 2001:1552.

    Google Scholar 

  69. Wang JK, Lue HC, Wu MH, Young ML, Wu FF, Wu JM. Obstructed total anomalous pulmonary venous connection. Pediatr Cardiol 1993;14:28–32.

    PubMed  CAS  Google Scholar 

  70. Ward KE, Mullins CE, Huhta JC, Nihill MR, McNamara DG, Cooley DA. Restrictive interatrial communication in total anomalous pulmonary venous connection. Am J Cardiol 1986;57:1131–1136.

    Article  PubMed  CAS  Google Scholar 

  71. Lamb RK, Qureshi SA, Wilkinson JL, Arnold R, West CR, Hamilton DI. Total anomalous pulmonary venous drainage. Seventeen-year surgical experience. J Thorac Cardiovasc Surg 1988;96:368–375.

    PubMed  CAS  Google Scholar 

  72. Gao YA, Burrows PE, Benson LN, Rabinovitch M, Freedom RM. Scimitar syndrome in infancy. J Am Coll Cardiol 1993;22:873–882.

    Article  PubMed  CAS  Google Scholar 

  73. Greil G, Powell A, Gildein H, Geva T. Gadolinium-enhanced three-dimensional magnetic resonance aniography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 2002;39:335–341.

    Article  PubMed  Google Scholar 

  74. Ghaye B, Szapiro D, Dacher J, Rodriguez L, Timmermans C, Devillers D, Dondelinger R. Percutaneous ablation for arrial fibrillation: the role of cross-sectional imaging. Radiographics 2003;23:19S.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hauser, T.H., Peters, D.C. (2008). Assessment of Pulmonary Venous Anatomy. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics