Skip to main content

Pediatric Perfusion Techniques for Complex Congenital Cardiac Surgery

  • Chapter
On Bypass

Abstract

Motivated by the inadequacy of nonsurgical therapy in ameliorating congenital cardiac disease, surgical pioneers in the 1940s and 1950s began to develop techniques that would allow for the intracardiac repair of congenital heart disease. The first operation on the open human heart under direct vision—closure of an atrial septal defect (ASD) in a 5-year-old girl—was performed at the University of Minnesota by Dr. F. John Lewis on September 2nd, 1952 (1). This operation was performed using inflow stasis and moderate total body hypothermia. Within 1 year, Lewis reported closure of 11 ASDs with only 18% mortality (2). This success, however, could not be extended to more complex defects without a system of extracorporeal oxygenation and perfusion. On May 6, 1953, John Gibbon used his extracorporeal oxygenation system to successfully close an ASD in a young woman (3). Despite this success, initial attempts at mechanical cardiopulmonary bypass (CPB) were uniformly dismal; of 18 reported cases between 1951 and 1954, using a variety of methods for total CPB (film oxygenators, bubble oxygenators, and monkey lungs), only those with ASDs survived (4–10). Faced with these results, alternative methods of perfusion were pursued, and on March 26, 1954, C. Walton Lillehei and colleagues successfully closed a ventricular septal defect (VSD) in a 12-month-old infant using controlled cross-circulation with the patient’s father functioning as the extracorporeal oxygenator (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis FJ, Taufic M. Closure of ASDs with the aid of hypothermia; experimental accomplishments and the report of one successful case. Surgery 1953;33(1):52–59.

    CAS  PubMed  Google Scholar 

  2. Lewis FJ, Varco RL, Taufic M. Repair of ASDs in man under direct vision with the aid of hypothermia. Surgery 1954;36(3):538–556.

    CAS  PubMed  Google Scholar 

  3. Edmunds LH, Jr. Advances in the heart-lung machine after John and Mary Gibbon. Ann Thorac Surg 2003;76(6):S2220–S2223.

    Article  PubMed  Google Scholar 

  4. Clowes GH, Jr., Neville WE, Hopkins A, Anzola J, Simeone FA. Factors contributing to success or failure in the use of a pump oxygenator for complete by-pass of the heart and lung, experimental and clinical. Surgery 1954;36(3):557–579.

    PubMed  Google Scholar 

  5. Dennis C. Perspective in review. One group’s struggle with development of a pump-oxygenator. Trans Am Soc Artif Intern Organs 1985;31:1–11.

    CAS  PubMed  Google Scholar 

  6. Dennis C, Spreng DS, Jr., Nelson GE, et al. Development of a pump-oxygenator to replace the heart and lungs; an apparatus applicable to human patients, and application to one case. Ann Surg 1951;134(4):709–721.

    CAS  PubMed  Google Scholar 

  7. Dodrill FD, Hill E, Gerisch RA, Johnson A. Pulmonary valvuloplasty under direct vision using the mechanical heart for a complete by-pass of the right heart in a patient with congenital pulmonary stenosis. J Thorac Surg 1953;26(6):584–594; discussion 195–197.

    CAS  PubMed  Google Scholar 

  8. Gibbon JH, Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 1954;37(3):171–185.

    PubMed  Google Scholar 

  9. Mustard WT, Thomson JA. Clinical experience with the artificial heart lung preparation. Can Med Assoc J 1957;76(4):265–269.

    CAS  PubMed  Google Scholar 

  10. Kirklin JW. Open-heart surgery at the Mayo Clinic. The 25th anniversary. Mayo Clin Proc 1980;55(5):339–341.

    CAS  PubMed  Google Scholar 

  11. Warden HE, Cohen M, Read RC, Lillehei CW. Controlled cross circulation for open intracardiac surgery: physiologic studies and results of creation and closure of ventricular septal defects. J Thorac Surg 1954;28(3):331–341.

    CAS  PubMed  Google Scholar 

  12. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 1950;132(5):849–866.

    Article  CAS  PubMed  Google Scholar 

  13. Sealy WC, Brown IW, Jr., Young WG, Jr. A report on the use of both extracorporeal circulation and hypothermia for open heart surgery. Ann Surg 1958;147(5):603–613.

    Article  CAS  PubMed  Google Scholar 

  14. Swan H. The hydroxyl-hydrogen ion concentration ratio during hypothermia. Surg Gynecol Obstet 1982;155(6):897–912.

    CAS  PubMed  Google Scholar 

  15. White FN, Somero G. Acid-base regulation and phospholipid adaptations to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol Rev 1982;62(1):40–90.

    CAS  PubMed  Google Scholar 

  16. Lloyd-Thomas A. Acid base balance. In: Jonas RA, Elliott MJ, eds. Cardiopulmonary Bypass in Neonates, infants and Young Children. Oxford, UK: Butterworth-Heinemann, Ltd.; 1994:100–109.

    Google Scholar 

  17. Swan H. The importance of acid-base management for cardiac and cerebral preservation during open heart operations. Surg Gynecol Obstet 1984;158(4): 391–414.

    CAS  PubMed  Google Scholar 

  18. Swain JA, McDonald TJ, Jr., Robbins RC, Balaban RS. Relationship of cerebral and myocardial intracellular pH to blood pH during hypothermia. American Journal of Physiology 1991;260(5 Pt 2):H1640–H1644.

    CAS  PubMed  Google Scholar 

  19. Belsey RH, Dowlatshahi K, Keen G, Skinner DB. Profound hypothermia in cardiac surgery. J Thorac Cardiovasc Surg 1968;56(4):497–509.

    CAS  PubMed  Google Scholar 

  20. Davies LK. Hypothermia. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, eds. Cardiopulmonary Bypass: Principles and Practice. 2nd ed. Lippincott, Williams & Wilkins: Philadelphia, PA; 2000:197–213.

    Google Scholar 

  21. Dexter F, Kern FH, Hindman BJ, Greeley WJ. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass. Ann Thorac Surg 1997;63(6):1725–1729.

    Article  CAS  PubMed  Google Scholar 

  22. Sakamoto T, Kurosawa H, Shin’oka T, Aoki M, Isomatsu Y. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring. J Thorac Cardiovasc Surg 2004;127(1):12–19.

    Article  PubMed  Google Scholar 

  23. Skaryak LA, Chai PJ, Kern FH, Greeley WJ, Ungerleider RM. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. J Thorac Cardiovasc Surg 1995;110(6):1649–1657.

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe T, Miura M, Orita H, Kobayasi M, Washio M. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Pulsatile assistance for circulatory arrest, low-flow perfusion, and moderate-flow perfusion. J Thorac Cardiovasc Surg 1990;100(2):274–280.

    CAS  PubMed  Google Scholar 

  25. Patel RL, Turtle MR, Chambers DJ, James DN, Newman S, Venn GE. Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 1996;111(6):1267–1279.

    Article  CAS  PubMed  Google Scholar 

  26. Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity. [see comment]. J Thorac Cardiovasc Surg 1995;110(2):340–348.

    Article  CAS  PubMed  Google Scholar 

  27. Stephan H, Weyland A, Kazmaier S, Henze T, Menck S, Sonntag H. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. British Journal of Anaesthesia 1992;69(1):51–57.

    Article  CAS  PubMed  Google Scholar 

  28. Jonas RA, Bellinger DC, Rappaport LA, et al. Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1993;106(2):362–368.

    CAS  PubMed  Google Scholar 

  29. du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 1997;114(6):991–1000.

    Article  PubMed  Google Scholar 

  30. Kern FH, Greeley WJ. Pro: pH-stat management of blood gases is not preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery. J Cardiothorac Vasc Anesth 1995;9(2):215–218.

    Article  CAS  PubMed  Google Scholar 

  31. Kirshbom PM, Skaryak LR, DiBernardo LR, et al. pH-stat cooling improves cerebral metabolic recovery after circulatory arrest in a piglet model of aortopulmonary collaterals. J Thorac Cardiovasc Surg 1996;111(1):147–155; discussion 156–157.

    Article  CAS  PubMed  Google Scholar 

  32. Jonas RA. Deep hypothermic circulatory arrest: current status and indications. Seminars in Thoracic & Cardiovascular Surgery Pediatric Cardiac Surgery Annual 2002;5:76–88.

    Article  Google Scholar 

  33. Laussen PC. Optimal blood gas management during deep hypothermic paediatric cardiac surgery: alpha-stat is easy, but pH-stat may be preferable. Paediatr Anaesth 2002;12(3):199–204.

    Article  PubMed  Google Scholar 

  34. Jonassen AE, Quaegebeur JM, Young WL. Cerebral blood flow velocity in pediatric patients is reduced after cardiopulmonary bypass with profound hypothermia. J Thorac Cardiovasc Surg 1995;110(4 Pt 1):934–943.

    Article  CAS  PubMed  Google Scholar 

  35. Allen BS, Barth MJ, Ilbawi MN. Pediatric myocardial protection: an overview. Seminars in Thoracic & Cardiovascular Surgery 2001;13(1):56–72.

    CAS  Google Scholar 

  36. Hammon JW, Jr. Myocardial protection in the immature heart. Ann Thorac Surg 1995;60(3):839–842.

    Article  PubMed  Google Scholar 

  37. Yee ES, Ebert PA. Effect of ischemia on ventricular function, compliance, and edema in immature and adult canine hearts. Surg Forum 1979;30:250–252.

    CAS  PubMed  Google Scholar 

  38. Allen BS. Pediatric myocardial protection: a cardioplegic strategy is the “solution”. Seminars in Thoracic & Cardiovascular Surgery Pediatric Cardiac Surgery Annual 2004;7:141–154.

    Article  Google Scholar 

  39. Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 1972;15(1):87–111.

    Article  CAS  PubMed  Google Scholar 

  40. Nienaber CA, Gambhir SS, Mody FV, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy. Circulation 1993;87(5):1580–1590.

    CAS  PubMed  Google Scholar 

  41. Peyton RB, Jones RN, Attarian D, et al. Depressed high-energy phosphate content in hypertrophied ventricles of animal and man: the biologic basis for increased sensitivity to ischemic injury. Ann Surg 1982;196(3):278–284.

    Article  CAS  PubMed  Google Scholar 

  42. Sink JD, Pellom GL, Currie WD, et al. Response of hypertrophied myocardium to ischemia: correlation with biochemical and physiological parameters. J Thorac Cardiovasc Surg 1981;81(6):865–872.

    CAS  PubMed  Google Scholar 

  43. Bandali KS, Belanger MP, Wittnich C. Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn. Am J Physiol Heart Circ Physiol 2004;287(2): H553–H559.

    Article  CAS  PubMed  Google Scholar 

  44. Serraf A, Robotin M, Bonnet N, et al. Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass. J Thorac Cardiovasc Surg 1997;114(6):1061–1069.

    Article  CAS  PubMed  Google Scholar 

  45. Friedman M, Sellke FW, Wang SY, Weintraub RM, Johnson RG. Parameters of pulmonary injury after total or partial cardiopulmonary bypass. Circulation 1994; 90(5 Pt 2):II262–II268.

    CAS  PubMed  Google Scholar 

  46. Friedman M, Wang SY, Sellke FW, Franklin A, Weintraub RM, Johnson RG. Pulmonary injury after total or partial cardiopulmonary bypass with thromboxane synthesis inhibition. Ann Thorac Surg 1995;59(3):598–603.

    Article  CAS  PubMed  Google Scholar 

  47. Kuratani T, Matsuda H, Sawa Y, Kaneko M, Nakano S, Kawashima Y. Experimental study in a rabbit model of ischemia-reperfusion lung injury during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1992;103(3):564–568.

    CAS  PubMed  Google Scholar 

  48. Komai H, Adatia IT, Elliott MJ, de Levai MR, Haworth SG. Increased plasma levels of endothelin-1 after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thorac Cardiovasc Surg 1993;106 (3):473–478.

    Google Scholar 

  49. Komai H, Haworth SG. Effect of cardiopulmonary bypass on the circulating level of soluble GMP-140. Ann Thorac Surg 1994;58(2):478–482.

    CAS  PubMed  Google Scholar 

  50. Kirshbom PM, Jacobs MT, Tsui SS, et al. Effects of cardiopulmonary bypass and circulatory arrest on endothelium-dependent vasodilation in the lung. J Thorac Cardiovasc Surg 1996;111(6):1248–1256.

    Article  CAS  PubMed  Google Scholar 

  51. Kirshbom PM, Page SO, Jacobs MT, et al. Cardiopulmonary bypass and circulatory arrest increase endothelin-1 production and receptor expression in the lung. J Thorac Cardiovasc Surg 1997;113(4):777–783.

    Article  CAS  PubMed  Google Scholar 

  52. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983;86(6):845–857.

    CAS  PubMed  Google Scholar 

  53. Skaryak LA, Lodge AJ, Kirshbom PM, et al. Low-flow cardiopulmonary bypass produces greater pulmonary dysfunction than circulatory arrest. Ann Thorac Surg 1996;62(5):1284–1288.

    Article  CAS  PubMed  Google Scholar 

  54. Wernovsky G, Wypij D, Jonas RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 1995; 92(8):2226–2235.

    CAS  PubMed  Google Scholar 

  55. Lodge AJ, Chai PJ, Daggett CW, Ungerleider RM, Jaggers J. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg 1999;117(3): 515–522.

    Article  CAS  PubMed  Google Scholar 

  56. Bando K, Vijay P, Turrentine MW, et al. Dilutional and modified ultrafiltration reduces pulmonary hypertension after operations for congenital heart disease: a prospective randomized study. J Thorac Cardiovasc Surg 1998;115(3):517–525; discussion 525–527.

    Article  CAS  PubMed  Google Scholar 

  57. Elliott MJ. Ultrafiltration and modified ultrafiltration in pediatric open heart operations. Ann Thorac Surg 1993;56(6):1518–1522.

    CAS  PubMed  Google Scholar 

  58. Koutlas TC, Gaynor JW, Nicolson SC, Steven JM, Wernovsky G, Spray TL. Modified ultrafiltration reduces postoperative morbidity after cavopulmonary connection. Ann Thorac Surg 1997;64(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  59. Ungerleider RM. Effects of cardiopulmonary bypass and use of modified ultrafiltration. Ann Thorac Surg 1998;65(6 Suppl):S35–S38; discussion S9, S74–S76.

    Article  CAS  PubMed  Google Scholar 

  60. Williams EA, Welty SE, Geske RS, et al. Liquid lung ventilation reduces neutrophil sequestration in a neonatal swine model of cardiopulmonary bypass. Crit Care Med 2001;29(4):789–795.

    Article  CAS  PubMed  Google Scholar 

  61. Cannon ML, Cheifetz IM, Craig DM, et al. Optimizing liquid ventilation as a lung protection strategy for neonatal cardiopulmonary bypass: full functional residual capacity dosing is more effective than half functional residual capacity dosing. Crit Care Med 1999;27(6):1140–1146.

    Article  CAS  PubMed  Google Scholar 

  62. Cheifetz IM, Cannon ML, Craig DM, et al. Liquid ventilation improves pulmonary function and cardiac output in a neonatal swine model of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1998;115(3):528–535.

    Article  CAS  PubMed  Google Scholar 

  63. Miller OI, Tang SF, Keech A, Pigott NB, Beller E, Celermajer DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet 2000;356(9240):1464–1469.

    Article  CAS  PubMed  Google Scholar 

  64. Kern FH, Hickey PR. The effects of cardiopulmonary bypass on the brain. In: Jonas RA, Elliott MJ, eds. Cardiopulmonary bypass in neonates, infants and young children. Oxford, UK: Butterworth-Heinemann, Ltd.; 1994:263–281.

    Google Scholar 

  65. Pua HL, Bissonnette B. Cerebral physiology in paediatric cardiopulmonary bypass. Canadian Journal of Anaesthesia 1998;45(10):960–978.

    Article  CAS  PubMed  Google Scholar 

  66. Ferry PC. Neurologic sequelae of open-heart surgery in children. An ‘irritating question’. Am J Dis Child 1990;144(3):369–373.

    CAS  PubMed  Google Scholar 

  67. McConnell JR, Fleming WH, Chu WK, et al. Magnetic resonance imaging of the brain in infants and children before and after cardiac surgery. A prospective study. Am J Dis Child 1990;144(3):374–378.

    CAS  PubMed  Google Scholar 

  68. Jaggers J, Shearer IR, Ungerleider RM. Cardiopulmonary bypass in infants and children. In: Gravlee GP, Davis RF, Kurusz M, Utley JR, eds. Cardiopulmonary Bypass: Principles and Practice. 2nd ed. Phiadelphia, PA: Lippincott, Williams &Wilkins; 2000:633–661.

    Google Scholar 

  69. Kern FH, Greeley WJ, Ungerleider R. The effects of bypass on the developing brain. Perfusion 1993;8(1):49–54.

    CAS  PubMed  Google Scholar 

  70. Kirklin JW, Barratt-Boyes BG. Cardiac Surgery. 1st ed. New York: John Wiley & Sons; 1986.

    Google Scholar 

  71. Aoki M, Jonas RA, Nomura F, et al. Effects of aprotinin on acute recovery of cerebral metabolism in piglets after hypothermic circulatory arrest. Ann Thorac Surg 1994;58(1):146–153.

    Article  CAS  PubMed  Google Scholar 

  72. Blauth C, Smith P, Newman S, et al. Retinal microembolism and neuropsychological deficit following clinical cardiopulmonary bypass: comparison of a membrane and a bubble oxygenator. A preliminary communication. Eur J Cardiothorac Surg 1989;3(2):135–138; discussion 9.

    Article  CAS  PubMed  Google Scholar 

  73. Semb BK, Pedersen T, Hatteland K, Storstein L, Lilleaasen P. Doppler ultrasound estimation of bubble removal by various arterial line filters during extracorporeal circulation. Scand J Thorac Cardiovasc Surg 1982;16(1):55–62.

    CAS  PubMed  Google Scholar 

  74. Armon C, Deschamps C, Adkinson C, Fealey RD, Orszulak TA. Hyperbaric treatment of cerebral air embolism sustained during an open-heart surgical procedure. Mayo Clin Proc 1991;66(6):565–571.

    CAS  PubMed  Google Scholar 

  75. Shen I, Giacomuzzi C, Ungerleider RM. Current strategies for optimizing the use of cardiopulmonary bypass in neonates and infants. Ann Thorac Surg 2003;75(2): S729–S734.

    Article  PubMed  Google Scholar 

  76. Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or lowflow cardiopulmonary bypass. N Engl J Med 1995;332(9):549–555.

    Article  CAS  PubMed  Google Scholar 

  77. Langley SM, Chai PJ, Miller SE, et al. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg 1999;68(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  78. Langley SM, Chai PJ, Jaggers JJ, Ungerleider RM. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 2000;17(3):279–286.

    Article  CAS  PubMed  Google Scholar 

  79. Hindman BJ, Dexter F, Cutkomp J, Smith T, Todd MM, Tinker JH. Brain blood flow and metabolism do not decrease at stable brain temperature during cardiopulmonary bypass in rabbits. Anesthesiology 1992;77(2):342–350.

    Article  CAS  PubMed  Google Scholar 

  80. Greeley WJ, Kern FH, Ungerleider RM, et al. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg 1991;101(5):783–794.

    CAS  PubMed  Google Scholar 

  81. Aoki M, Nomura F, Stromski ME, et al. Effects of pH on brain energetics after hypothermic circulatory arrest. Ann Thorac Surg 1993;55(5):1093–1103.

    Article  CAS  PubMed  Google Scholar 

  82. Schultz S, Creed J, Schears G, et al. Comparison of low-flow cardiopulmonary bypass and circulatory arrest on brain oxygen and metabolism. Ann Thorac Surg 2004;77(6):2138–2143.

    Article  PubMed  Google Scholar 

  83. Skaryak LA, Kirshbom PM, DiBernardo LR, et al. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg 1995;109(4):744–751; discussion 51–52.

    Article  CAS  PubMed  Google Scholar 

  84. Edmunds LH, Jr. Inflammatory and immunogical response to cardiopulmonary bypass. In: Jonas RA, Elliott MJ, eds. Cardiopulmonary bypass in neonates, infants, and young children. Oxford, UK: Butterworth-Heinemann; 1994: 225–241.

    Google Scholar 

  85. Jansen PG, Baufreton C, Le Besnerais P, Loisance DY, Wildevuur CR. Heparincoated circuits and aprotinin prime for coronary artery bypass grafting. Ann Thorac Surg 1996;61(5):1363–1366.

    Article  CAS  PubMed  Google Scholar 

  86. Pintar T, Collard CD. The systemic inflammatory response to cardiopulmonary bypass. Anesthesiol Clin North America 2003;21(3):453–464.

    Article  CAS  PubMed  Google Scholar 

  87. Nuttall GA, Fass DN, Oyen LJ, Oliver WC, Jr., Ereth MH. A study of a weightadjusted aprotinin dosing schedule during cardiac surgery. Anesth Analg 2002; 94(2):283–289.

    Article  CAS  PubMed  Google Scholar 

  88. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006;354(4):353–365.

    Article  CAS  PubMed  Google Scholar 

  89. Heindel SW, Mill MR, Freid EB, Valley RD, White GC, 2nd, Norfleet EA. Fatal thrombosis associated with a hemi-fontan procedure, heparin-protamine reversal, and aprotinin. Anesthesiology 2001;94(2):369–371.

    Article  CAS  PubMed  Google Scholar 

  90. Bailey JM, Daly WL. Pediatric cardiopulmonary bypass. In: Mora CT, ed. Cardiopulmonary bypass: principles and techniques of extracorporeal circulation. New York: Springer-Verlag; 1995:312–328.

    Google Scholar 

  91. Ratcliffe JM, Elliott MJ, Wyse RK, Hunter S, Alberti KG. The metabolic load of stored blood. Implications for major transfusions in infants. Arch Dis Child 1986;61(12):1208–1214.

    Article  CAS  PubMed  Google Scholar 

  92. Salama A, Mueller-Eckhardt C. Delayed hemolytic transfusion reactions. Evidence for complement activation involving allogeneic and autologous red cells. Transfusion 1984;24(3):188–193.

    Article  CAS  PubMed  Google Scholar 

  93. Hall TL, Barnes A, Miller JR, Bethencourt DM, Nestor L. Neonatal mortality following transfusion of red cells with high plasma potassium levels. Transfusion 1993;33(7):606–609.

    Article  CAS  PubMed  Google Scholar 

  94. Keidan I, Amir G, Mandel M, Mishali D. The metabolic effects of fresh versus old stored blood in the priming of cardiopulmonary bypass solution for pediatric patients. J Thorac Cardiovasc Surg 2004;127(4):949–952.

    Article  PubMed  Google Scholar 

  95. Marelli D, Paul A, Samson R, Edgell D, Angood P, Chiu RC. Does the addition of albumin to the prime solution in cardiopulmonary bypass affect clinical outcome? A prospective randomized study. J Thorac Cardiovasc Surg 1989;98(5 Pt 1):751–756.

    CAS  PubMed  Google Scholar 

  96. Jonas RA, Wypij D, Roth SJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 2003;126(6):1765–1774.

    Article  PubMed  Google Scholar 

  97. Rosengart TK, DeBois W, O’ Hara M, et al. Retrograde autologous priming for cardiopulmonary bypass: a safe and effective means of decreasing hemodilution and transfusion requirements. J Thorac Cardiovasc Surg 1998;115(2):426–438; discussion 38–39.

    Article  CAS  PubMed  Google Scholar 

  98. Huang H, Yao T, Wang W, et al. Continuous ultrafiltration attenuates the pulmonary injury that follows open heart surgery with cardiopulmonary bypass. Ann Thorac Surg 2003;76(1):136–140.

    Article  PubMed  Google Scholar 

  99. Thompson LD, McElhinney DB, Findlay P, et al. A prospective randomized study comparing volume-standardized modified and conventional ultrafiltration in pediatric cardiac surgery. J Thorac Cardiovasc Surg 2001;122(2):220–228.

    Article  CAS  PubMed  Google Scholar 

  100. Ahlberg K, Sistino JJ, Nemoto S. Hematological effects of a low-prime neonatal cardiopulmonary bypass circuit utilizing vacuum-assisted venous return in the porcine model. J Extra Corpor Technol 1999;31(4):195–201.

    CAS  PubMed  Google Scholar 

  101. Grown-up congenital heart (GUCH) disease: current needs and provision of service for adolescents and adults with congenital heart disease in the UK. Heart 2002;88Suppl 1:i1–i14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Charette, K.A., Davies, R.R., Chen, J.M., Quaegebeur, J.M., Mosca, R.S. (2008). Pediatric Perfusion Techniques for Complex Congenital Cardiac Surgery. In: Mongero, L.B., Beck, J.R. (eds) On Bypass. Current Cardiac Surgery. Humana Press. https://doi.org/10.1007/978-1-59745-305-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-305-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-636-8

  • Online ISBN: 978-1-59745-305-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics