Skip to main content
  • 10k Accesses

Abstract

For decades before the current low-carbohydrate focus pervading public opinion, dietary fat was the primary target of public and academic condemnation. But just as the present trend in macronutrient preference will likely lead to an understanding that the type and not just the amount of carbohydrate matters, so too has awareness grown regarding dietary fat. There are examples. The latest dietary guidelines for Americans has a modified descriptor for total fat intake (“moderate” as opposed to the former “low”) and the Harvard School of Public Health has published a radically changed eating pyramid that differs from the longstanding Food Guide Pyramid.1,2 It flips healthy fat sources such as olive oil and nuts—now near the plentiful bottom—with refined carbohydrates such as white bread and pasta—now limited at the top. More specific to fat type, academicians are discussing saturated fatty acids (not all are equally “bad”), trans fatty acids, monounsaturates, specialty nutraceutical fats, and omega-6 to omega-3 ratio in the diet. It is important for exercise physiology and sports nutrition students to understand the basic chemistry of fat, the metabolism of fat as illustrated by common, whole-body laboratory measurements, and the research regarding biologic systems that are affected by fat. In these ways, one can appreciate the nutritional importance and pharmaceutical-like nature of this macronutrient—and see how it can be applied to athletic endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gifford K. Dietary fats, eating guides, and public policy: history, critique, and recommendations. Am J Med 2002;113(Suppl 9B):89S—106S.

    Article  Google Scholar 

  2. Harvard Schoo1 of Public Health. Nutrition Book Author Willet Rebuilds USDA Food Pyramid. Harvard Public Health NOW. Roache C, ed. August 4, 2001; Available at: http://www.hsph.harvard.edu/now/aug24/index.

  3. Zuntz N. Die bedeutung de verschiendenen nahrstoffe als erzeuger der muskelkraft. Pflugers Arch Physiol 1901;83:557. In: McArdle W, Katch F, Katch V, eds. Exercise Physiology. Philadelphia: Lea &. Febiger; 1991:153.

    Google Scholar 

  4. Ehringer W, Belcher D, Wassall S, Stillwell W. A comparison of the effects of linolenic (18:3 omega 3) and docosahexaenoic (22:6 omega 3) acids on phospholipid bilayers. Chem Phy Lipids 1990;54(2):79–88.

    Article  CAS  Google Scholar 

  5. Calder P. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001;36(9): 1007–1024.

    Article  CAS  Google Scholar 

  6. Masley S. Diet thcrapy for preventing and treating coronary artery disease. Am Fam Physician 1998;57(6): 1299–1306.

    CAS  Google Scholar 

  7. Salway J. Metabolism at a Glance. London: Blackwell Scientific Publications; 1994.

    Google Scholar 

  8. Mann NJ, Johnson LG, Warrick GE, Sinclair AJ. The arachidonic acid content of the Australian diet is lower than previously estimated. J Nutr 1995;125(10):2528–2535.

    CAS  Google Scholar 

  9. Simopoulos A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002;56(8):365–379.

    Article  CAS  Google Scholar 

  10. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: National Academies Press; 2002:335–432.

    Google Scholar 

  11. Schmidt M, Duncan B. Diabesity: an inflammatory metabolie condition. Clin Chem Lab Med 2003;41(9):1120–1130.

    Article  CAS  Google Scholar 

  12. Wallace J. If heart disease is an inflammatory disease, what about the risk factors? Am Soc Exerc Physiol Natl Mtg, April 2, 2004.

    Google Scholar 

  13. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary hearl disease: is interleukin-6 the link? Atherosclerosis 2000;148(2):209–214.

    Article  CAS  Google Scholar 

  14. American Heart Association. AHA scientific statement: fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease, #71-0241. Circulation 2002;106:2747–2757.

    Article  Google Scholar 

  15. Lichtenstein AH. Dietary trans fatty acid. J Cardiopulm Rehabil 2000;20(3):143–146.

    Article  CAS  Google Scholar 

  16. Popkin BM, Siega-Riz AM, Haines PS, Jahns L. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 2004;79(4):606–612.

    Google Scholar 

  17. Browning L. n-3 polyunsaturated fatty acids, inflammation and obesity-related disease. Proc Nutr Soc 2003;62(2):447–453.

    Article  CAS  Google Scholar 

  18. Endres S. n-3 polyunsaturated fatty acids and human cytokine synthesis. Lipids 1996;31 (Suppl):S239–S242.

    Article  CAS  Google Scholar 

  19. Endres S, Ghorbani R, Kelley V, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989;320(5):265–27l.

    Article  CAS  Google Scholar 

  20. Calder P. n-3 polyunsaturated fatty acids and cytokine production in health and disease. Ann Nutr Metab 1997;41(4):203–234.

    Article  CAS  Google Scholar 

  21. Curtis C, Hughes C, Flannery C, Little C, Harwood J, Caterson B. n-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. J Biol Chem 2000;275(2):721–724.

    Article  CAS  Google Scholar 

  22. Phillips T, Childs A, Dreon D, Phinney S, Leeuwenburgh C. A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc 2003;35(12):2032–2037.

    Article  CAS  Google Scholar 

  23. Delarue J, Matzinger O, Binnert C, Schneiter P, Chiolero R, Tappy L. Fish oil prevents the adrenal activation elicited by mental stress in healthy men. Diabetes Metab 2003;29(3):289–295.

    Article  CAS  Google Scholar 

  24. Dorgan J, Judd J, Longcope C, et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr 1996;64(6):850–855.

    CAS  Google Scholar 

  25. Hamalainen E, Adlercreutz H, Puska P, Pietinen P. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J Steroid Biochem 1983;18(3):369–370.

    Article  CAS  Google Scholar 

  26. Reed M, Cheng R, Simmonds M, Richmond W, James V. Dietary lipids: an additional regulator of plasma levels of sex hormone binding globulin. J Clin Endocrinol Metab 1987;64(5): 1083–1085.

    Article  CAS  Google Scholar 

  27. Albertazzi P, Coupland K. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention? Maturitas 2002;42(1):13–22.

    Article  CAS  Google Scholar 

  28. Logan A. Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 2003;8(4):410–425.

    Google Scholar 

  29. Su K, Huang S, Chiu C, Shen W. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2003;13(4):267–271.

    Article  CAS  Google Scholar 

  30. Lowery L. Dietary fat and sports nutrition: a primer. J Sports Sci Med 2004;3(3):106–117.

    Google Scholar 

  31. Hinton P, Sanford T, Davidson M, Yakushko O, Beck N. Nutrient intakes and dietary behaviors of male and female collegiate athletes. Int J Sport Nutr Exerc Metab 2004; 14:389–398.

    CAS  Google Scholar 

  32. Burke L. Energy needs of athletes. Can J Appl Physiol 2001;26(Suppl):S202–S219.

    Google Scholar 

  33. Brooks GA. Importance of the ‘crossover’ concept in exercise metabolism. Clin Exp Pharmacol Physiol 1997;24( 11 ):889–895.

    Article  CAS  Google Scholar 

  34. Sidossis LS, Gastaldelli A, Klein S, Wolfe RR. Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am J Physiol 1997;272(6 Pt 1):E1065–E1070.

    CAS  Google Scholar 

  35. Ballor DL, McCarthy JP, Wilterdink EJ. Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss. Am J Clin Nutr 1990;51(2):142–146.

    CAS  Google Scholar 

  36. Yarasheski K. Growth hormone effects on metabolism, body composition, muscle mass, and strength. Exerc Sport Sci Rev 1994;22:285–312.

    Article  CAS  Google Scholar 

  37. Gabriel H, Schwartz L, Steffens G, Kindermann W. Immunoregulatory hormones, circulating leukocyte and lymphocyte subpopulations before and after endurance exercise at different intensities. Int J Sports Med 1992;13(5):359–366.

    Article  CAS  Google Scholar 

  38. Tiidus P, Shoemaker J. Effleurage massage, muscle blood flow and long-term postexercise strength recovery. Int J Sports Med 1995;16(7):478–483.

    Article  CAS  Google Scholar 

  39. Coffey V, Leveritt M, Gill N. Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. J Sci Med Sport 2004;7(1): 1–10.

    Article  CAS  Google Scholar 

  40. Spierer D, Goldsrnith R, Baran D, Hryniewicz K, Katz S. Effects of active versus passive recovery on work performed during serial supramaximal exercise tests. Int J Sports Med 2004;25(2):109–114.

    Article  CAS  Google Scholar 

  41. Kentta G, Hassmen P, Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. Int J Sports Med 2001;22(6):460–465.

    Article  CAS  Google Scholar 

  42. Hargreaves M, Hawley J, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci 2004;22(1):31–38.

    Article  Google Scholar 

  43. Venkatraman J, Leddy J, Pendergast D. Dietary fats and immune status in athletes: clinical implications. Med Sci Sports Exerc 2000;32(7 Suppl):S389–S395.

    CAS  Google Scholar 

  44. Roberts A, McClure R, Weiner R, Brooks G. Overtraining affects male reproductive status. Fertil Steril 1993;60(4):686–692.

    CAS  Google Scholar 

  45. Zderic T, Davidson C, Schenk S, Byerley L, Coyle E. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab 2004;286(2):E217–E225.

    Article  CAS  Google Scholar 

  46. Fleming J, Sharman M, Avery N, et al. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab 2003;13(4):466–478.

    CAS  Google Scholar 

  47. Stepto N. Effect of short term fat adaptation on high intensity training. Med Sci Sports Exerc 2002;34(3):449–455.

    Article  Google Scholar 

  48. Volek J, Sharman M, Love D, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism 2002;51(7):864–870.

    Article  CAS  Google Scholar 

  49. Venkatraman J, Feng X, Pendergast D. Effects of dietary fat and endurance exercise on plasma cortisol, prostaglandin E2, interferon-gamma and lipid peroxides in runners. J Am College Nutr 2001;20(5):529–536.

    CAS  Google Scholar 

  50. Venkatraman J, Rowland J, Denardin E, Horvath P, Pendergast D. Influence of the level of dietary lipid intake and maximal exercise on the immune status in runners. Med Sci Sports Exerc 1997;29(3):333–344.

    Article  CAS  Google Scholar 

  51. Horvath P, Eagen C, Fisher N, Leddy J, Pendergast D. The effects of varying dietary fat on performance and metabolism in trained male and female runners. J Am College Nutr 2000;19(1):52–60.

    CAS  Google Scholar 

  52. Hawley J, Burke L, Angus D, Fallon K, Martin D, Febbraio M. Effect of altering substrate availability on metabolism and performance during intense exercise. Br J Nutr 2000;84(6):829–838.

    CAS  Google Scholar 

  53. Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med 1995;20(4):251–276.

    Article  CAS  Google Scholar 

  54. Lenn J, Uhl T, Mattacola C, et a1. The effects of fish oil and isoflavones on delayed onset muscle soreness. Med Sci Sports Exerc 2002;34(10):1605–1613.

    CAS  Google Scholar 

  55. Kremer J, Jubiz W, Michalek A, et al. Fish-oil fatty acid supplementation in active rheumatoid arthritis: a double-blinded, controlled, crossover study. Ann Intern Med 1987;106:497–503.

    CAS  Google Scholar 

  56. Fox A, Kaufman A, Horowitz J. Adding fat calories to meals after exercise does not alter glucose tolerance. J Appl Physiol 2004;97(1): 11–16.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press. a part of Spring Science+Business Media, LLC

About this chapter

Cite this chapter

Lowery, L. (2008). Fat. In: Antonio, J., Kalman, D., Stout, J.R., Greenwood, M., Willoughby, D.S., Haff, G.G. (eds) Essentials of Sports Nutrition and Supplements. Humana Press. https://doi.org/10.1007/978-1-59745-302-8_13

Download citation

Publish with us

Policies and ethics