Skip to main content

Topical Application of TGF-β1 Peptide Inhibitors for the Therapy of Skin Fibrosis

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1610 Accesses

Abstract

Transforming growth factor beta (TGF-β) plays a crucial role in the pathogenesis of skin fibrotic diseases by inducing extracellular matrix gene expression and sustaining fibroblast growth and differentiation. Systemic inhibition of TGF-β by different agents has been shown to effectively inhibit fibrosis in different animal models. However, systemic inhibition of TGF-β raises important safety issues because of the pleiotropic physiological effects of this factor.

Targeting of downstream factors specifically involved in TGF-β profibrotic signaling or local targeting of TGF-β represents potential alternatives to systemic inhibitors. Topical application of a short peptide derived from TGF-β1 type III receptor is effective in preventing or ameliorating established fibrosis in a model of bleomycin-induced scleroderma, suggesting that topical application of small anti-TGF-β peptides is a feasible strategy to treat pathological skin scarring and skin fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  Google Scholar 

  2. Roberts AB, Flanders KC, Heine UI, et al. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci 1990;327:145–154.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986;83:4167–4171.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts AB, Heine UI, Flanders KC, Sporn MB. Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann N Y Acad Sci 1990;580:225–232.

    Article  CAS  PubMed  Google Scholar 

  5. Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 1999;274:37,413–37,420.

    Article  CAS  PubMed  Google Scholar 

  6. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004;18:816–827.

    Article  CAS  PubMed  Google Scholar 

  7. Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 2002;118:211–215.

    Article  CAS  PubMed  Google Scholar 

  8. Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  9. Bitzer M, Sterzel RB, Bottinger EP. Transforming growth factor-beta in renal disease. Kidney Blood Press Res 1998;21:1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Bedossa P, Paradis V. Transforming growth factor-beta (TGF-beta): a key-role in liver fibrogenesis. J Hepatol 1995;22(Suppl):37–42.

    CAS  PubMed  Google Scholar 

  11. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994;331:1286–1292.

    Article  CAS  PubMed  Google Scholar 

  12. Silver RM. Clinical aspects of localized and systemic scleroderma. Curr Opin Rheumatol 1991;3:973–978.

    Article  CAS  PubMed  Google Scholar 

  13. Abraham DJ, Varga J. Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol 2005;26:587–595.

    Article  CAS  PubMed  Google Scholar 

  14. Leroy EC. Connective tissue synthesis by scleroderma skin fibroblasts in cell culture. J Exp Med 1972;135:1351–1362.

    Article  CAS  PubMed  Google Scholar 

  15. Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995;146:56–66.

    CAS  PubMed  Google Scholar 

  16. Santiago B, Galindo M, Rivero M, Pablos JL. Decreased susceptibility to Fas-induced apoptosis of systemic sclerosis dermal fibroblasts. Arthritis Rheum 2001;44:1667–1676.

    Article  CAS  PubMed  Google Scholar 

  17. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K. Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. J Invest Dermatol 2005;124:886–892.

    Article  CAS  PubMed  Google Scholar 

  18. Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 1997;100:2697–2713.

    Article  CAS  PubMed  Google Scholar 

  19. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

    Article  CAS  PubMed  Google Scholar 

  20. Ito Y, Sarkar P, Mi Q, et al. Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 2001;236:181–194.

    Article  CAS  PubMed  Google Scholar 

  21. Chan T, Ghahary A, Demare J, et al. Development, characterization, and wound healing of the keratin 14 promoted transforming growth factor-beta1 transgenic mouse. Wound Repair Regen 2002;10:177–187.

    Article  PubMed  Google Scholar 

  22. Lakos G, Takagawa S, Chen SJ, et al. Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 2004;165:203–217.

    CAS  PubMed  Google Scholar 

  23. Gruschwitz M, Muller PU, Sepp N, Hofer E, Fontana A, Wick G. Transcription and expression of transforming growth factor type beta in the skin of progressive systemic sclerosis: a mediator of fibrosis? J Invest Dermatol 1990;94:197–203.

    Article  CAS  PubMed  Google Scholar 

  24. Kubo M, Ihn H, Yamane K, Tamaki K. Upregulated expression of transforming growth factor-beta receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol 2002;29:2558–2564.

    CAS  PubMed  Google Scholar 

  25. Dong C, Zhu S, Wang T, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 2002;99:3908–3913.

    Article  CAS  PubMed  Google Scholar 

  26. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. J Clin Invest 2004;113:253–264.

    CAS  PubMed  Google Scholar 

  27. Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M. Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol 1998;110:47–51.

    Article  CAS  PubMed  Google Scholar 

  28. Pannu J, Gore-Hyer E, Yamanaka M, et al. An increased transforming growth factor beta receptor type I: type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor beta receptor type II in scleroderma. Arthritis Rheum 2004;50:1566–1577.

    Article  CAS  PubMed  Google Scholar 

  29. Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum 2003;48:1964–1978.

    Article  CAS  PubMed  Google Scholar 

  30. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Increased expression levels of integrin alphavbeta5 on scleroderma fibroblasts. Am J Pathol 2004;164:1275–1292.

    CAS  PubMed  Google Scholar 

  31. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Increased expression of integrin alpha-v beta3 contributes to the establishment of autocrine TGF-beta signaling in scleroderma fibroblasts. J Immunol 2005;175:7708–7718.

    CAS  PubMed  Google Scholar 

  32. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K. Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts. Am J Pathol 2005;166:1451–1463.

    CAS  PubMed  Google Scholar 

  33. Igarashi A, Nashiro K, Kikuchi K, et al. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from, patients with systemic sclerosis. J Invest Dermatol 1995;105:280–284.

    Article  CAS  PubMed  Google Scholar 

  34. Denton CP, Abraham DJ. Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 2001;13:505–511.

    Article  CAS  PubMed  Google Scholar 

  35. Farge D, Passweg J, van Laar JM, et al. Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR Registry. Ann Rheum Dis 2004;63:974–981.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, McCormick LL, Gilliam AC. Latency-associated peptide prevents skin fibrosis in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2003;121:713–719.

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto T, Takagawa S, Katayama I, Nishioka K. Anti-sclerotic effect of transforming growth factor-beta antibody in a mouse model of bleomycin-induced scleroderma. Clin Immunol 1999;92:6–13.

    Article  CAS  PubMed  Google Scholar 

  38. Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor-1 antibody therapy in systemic sclerosis: a multicenter, randomized placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 2004;56:323–333.

    Article  Google Scholar 

  39. Bachman KE, Park BH. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol 2005;17:49–54.

    Article  CAS  PubMed  Google Scholar 

  40. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2005;8:8.

    CAS  Google Scholar 

  41. Verga J. Antifibrotic therapy in scleroderma: extracellular or intracellular targeting of activated fibroblasts? Curr Rheumatol Rep 2004;6:164–170.

    Article  Google Scholar 

  42. Daniels CE, Wilkes MC, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004;114:1308–1316.

    CAS  PubMed  Google Scholar 

  43. Mori Y, Ishida W, Bhattacharyya S, Li Y, Platanias LC, Varga J. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts. Arthritis Rheum 2004;50:4008–4021.

    Article  CAS  PubMed  Google Scholar 

  44. Ihn H, Yamane K, Tamaki K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Invest Dermatol 2005;125:247–255.

    CAS  PubMed  Google Scholar 

  45. McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol 2002;118:461–470.

    Article  CAS  PubMed  Google Scholar 

  46. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Phosphatidylinositol 3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol. 2004;172:7123–7135.

    CAS  PubMed  Google Scholar 

  47. Ivkovic S, Yoon BS, Popoff SN, et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 2003;130:2779–2791.

    Article  CAS  PubMed  Google Scholar 

  48. Mageto Y, FK, Brown K, Fong A, Raghu G. Safety and tolerability of human monoclonal antibody FG-3019, anti-connective tissue growth factor, in patients with idiopathic pulmonary fibrosis. Chest Meeting Abstracts 2004;126:S773.

    Google Scholar 

  49. Ezquerro IJ, Lasarte JJ, Dotor J, et al. A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 2003;22:12–20.

    Article  CAS  PubMed  Google Scholar 

  50. Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 1981;78:3824–3828.

    Article  CAS  PubMed  Google Scholar 

  51. Jester JV, Barry-Lane PA, Petroll WM, Olsen DR, Cavanagh HD. Inhibition of corneal fibrosis by topical application of blocking antibodies to TGF beta in the rabbit. Cornea 1997;16:177–187.

    Article  CAS  PubMed  Google Scholar 

  52. Brahmatewari J, Serafini A, Serralta V, Mertz PM, Eaglstein WH. The effects of topical transforming growth factor-beta2 and anti-transforming growth factor-beta2,3 on scarring in pigs. J Cutan. Med Surg 2000;4:126–131.

    CAS  PubMed  Google Scholar 

  53. Yamamoto T, Takagawa S, Katayama I, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999;112:456–462.

    Article  CAS  PubMed  Google Scholar 

  54. Santiago B, Gutierrez-Canas I, Dotor J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol 2005;125:450–455.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto T, Takagawa S, Katayama I, Mizushima Y, Nishioka K. Effect of superoxide dismutase on bleomycin-induced dermal sclerosis: implications for the treatment of systemic sclerosis. J Invest Dermatol 1999;113:843–847.

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto T, Takagawa S, Kuroda M, Nishioka K. Effect of interferon-gamma on experimental scleroderma induced by bleomycin. Arch Dermatol Res 2000;292:362–365.

    Article  CAS  PubMed  Google Scholar 

  57. Galindo M, Santiago B, Rivero M, Rullas J, Alcami J, Pablos JL. Chemokine expression by systemic sclerosis fibroblasts: abnormal regulation of monocyte chemoattractant protein 1 expression. Arthritis Rheum 2001;44:1382–1386.

    Article  CAS  PubMed  Google Scholar 

  58. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Connective tissue growth factor: expression in human skin in vivo and inhibition by ultraviolet irradiation. J Invest Dermatol 2002;118:402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Dotor, J., Pablos, J.L. (2008). Topical Application of TGF-β1 Peptide Inhibitors for the Therapy of Skin Fibrosis. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_44

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics