Skip to main content

Smads in the Fibrotic Response: Findings in the Smad3 Knockout Mouse

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1628 Accesses

Abstract

Transforming growth factor-β (TGF-β) mediates both physiological and pathological fibrotic responses by inducing influx and activation of inflammatory cells, epithelial to mesenchymal transdifferentiation of cells, and influx of fibroblasts and secretion of extracellular matrix. Activated TGF-β receptors phosphorylate signaling intermediates called Smad proteins which translocate to the nucleus and alter gene transcription. Mice in which the gene for Smad3, one of the TGF-β signaling proteins. has been deleted show more rapid healing of incisional and excisional wounds with less inflammation and matrix deposition. Smad3 null inflammatory cells and fibroblasts do not respond to the chemotactic effects of TGF-β and do not autoinduce TGF-β or respond to TGF-β-mediated induction of extracellular matrix proteins. Smad3 also appears to modulate pathologic fibrosis in that Smad3 null mice are resistant to fibrosis in a number of animal models including radiation-induced cutaneous fibrosis, bleomycin-induced pulmonary fibrosis, glomerulosclerosis resulting from unilateral ureter obstruction, and proliferative vitreoretinopathy. Agents that inhibit phosphorylation of Smad3 by affecting the TGF-β Type I receptor kinase reduce collagen synthesis of cells in vitro. Inducing expression of Smad7, an inhibitory Smad, inhibits unwanted matrix deposition in animal models of cutaneous, pulmonary, ocular, and renal fibrosis, suggesting that Smad3 inhibitors may have clinical potential in the treatment of pathological fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts AB, Sporn MB. The transforming growth factors-β. In: Sporn MB, Roberts AB, eds. Handbook of Experimental Pharmacology. Peptide Growth Factors and Their Receptors. New York: Springer-Verlag 1990:419–472.

    Google Scholar 

  2. Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  3. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004;85:47–64.

    Article  CAS  PubMed  Google Scholar 

  4. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994;31:1286–1292.

    Article  Google Scholar 

  5. Roberts AB, Sporn MB. Transforming growth factor-β. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press 1996:275–308.

    Google Scholar 

  6. Moustakas A, Souchelnytskyi S, Heldin C-H. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114:4359–4369.

    CAS  PubMed  Google Scholar 

  7. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  8. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  9. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    Article  CAS  PubMed  Google Scholar 

  10. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Clin Exp Nephrol 2005;24:5742–5750.

    CAS  Google Scholar 

  11. Matsuura I, Wang G, He D, Liu F. Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 2005;44:12,546–12,553.

    Article  CAS  PubMed  Google Scholar 

  12. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004;430:226–231.

    Article  CAS  PubMed  Google Scholar 

  13. Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 1998;393:786–790.

    Article  CAS  PubMed  Google Scholar 

  14. Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ. Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 1998;92:797–808.

    Article  CAS  PubMed  Google Scholar 

  15. Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA 1998;95:9378–9383.

    Article  CAS  PubMed  Google Scholar 

  16. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF. Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 1999;19:2495–2504.

    CAS  PubMed  Google Scholar 

  17. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999;18:1280–1291.

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001;153:35–46.

    Article  CAS  PubMed  Google Scholar 

  19. Piek E, Ju WJ, Heyer J, et al. Functional characterization of transforming growth factor beta signaling in Smad2-and Smad3-deficient fibroblasts. J Biol Chem 2001;276:19,945–19,953.

    Article  CAS  PubMed  Google Scholar 

  20. Yang YC, Piek E, Zavadil J, et al. Hierarchical model of gene regulation by transforming growth factor-beta. Proc Natl Acad Sci USA 2003;100:10,269–10,274.

    Article  CAS  PubMed  Google Scholar 

  21. Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001;276:17,058–17,062.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 transcription in dermal fibroblasts involves Smad3. J Biol Chem 2001;276:38,502–38,510.

    Article  CAS  PubMed  Google Scholar 

  23. Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1999;1:260–266.

    Article  CAS  PubMed  Google Scholar 

  24. Flanders KC, Major CD, Arabshahi A, et al. Interference with transforming growth factor-beta/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol 2003;163:2247–2257.

    CAS  PubMed  Google Scholar 

  25. Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J Biol Chem 2001;276:42,908–42,914.

    Article  CAS  PubMed  Google Scholar 

  26. Chipuk JE, Cornelius SC, Pultz NJ, et al. The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 2002;277:1240–1248.

    Article  CAS  PubMed  Google Scholar 

  27. Ashcroft GS, Dodsworth J, van Boxtel E, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med 1997;3:1209–1215.

    Article  CAS  PubMed  Google Scholar 

  28. Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 2002;110:615–624.

    CAS  PubMed  Google Scholar 

  29. Ashcroft GS, Mills SJ, Flanders KC, et al. Role of Smad3 in the hormonal modulation of in vivo wound healing responses. Wound Repair Regen 2003;11:468–473.

    Article  PubMed  Google Scholar 

  30. Arany PA, Flanders KC, Kobayashi T, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proc Natl Acad Sci USA 2006;103:9250–9255.

    Article  CAS  PubMed  Google Scholar 

  31. Falanga V, Schrayer D, Cha J, et al. Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair Regen 2004;12:320–326.

    Article  PubMed  Google Scholar 

  32. Liu X, Wen FQ, Kobayashi T, et al. Smad3 mediates the TGF-beta-induced contraction of type I collagen gels by mouse embryo fibroblasts. Cell Motil Cytoskeleton 2003;54:248–253.

    Article  CAS  PubMed  Google Scholar 

  33. Flanders KC, Burmester JK. Medical applications of transforming growth factor-beta. Clin Med Res 2003;1:13–20.

    Article  CAS  PubMed  Google Scholar 

  34. Flanders KC, Sullivan CD, Fujii M, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002;160:1057–1068.

    CAS  PubMed  Google Scholar 

  35. Tibbs MK. Wound healing following radiation therapy: a review. Radiother Oncol 1997;42:99–106.

    Article  CAS  PubMed  Google Scholar 

  36. Mori T, Kawara S, Shinozaki M, et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol 1999;181:153–159.

    Article  CAS  PubMed  Google Scholar 

  37. Phan TT, Lim IJ, Aalami O, et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol 2005;207:232–242.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao J, Shi W, Wang YL, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2002;282:L585–L593.

    CAS  PubMed  Google Scholar 

  39. Ramirez AM, Takagawa S, Sekosan M, Jaffe HA, Varga J, Roman J. Smad3 deficiency ameliorates experimental obliterative bronchiolitis in a heterotopic tracheal transplantation model. Am J Pathol 2004;165:1223–1232.

    CAS  PubMed  Google Scholar 

  40. Bonniaud P, Kolb M, Galt T, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 2004;173:2099–2108.

    CAS  PubMed  Google Scholar 

  41. Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 2005;175:5390–5395.

    CAS  PubMed  Google Scholar 

  42. Chen H, Sun J, Buckley S, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005; 288:L683–L691.

    Article  CAS  PubMed  Google Scholar 

  43. Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001;34:89–100.

    Article  CAS  PubMed  Google Scholar 

  44. Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 2003;305:1002–1007.

    Article  CAS  PubMed  Google Scholar 

  45. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:1486–1494.

    CAS  PubMed  Google Scholar 

  46. Inazaki K, Kanamaru Y, Kojima Y, et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 2004;66:597–604.

    Article  CAS  PubMed  Google Scholar 

  47. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Clin Exp Nephrol 2005;24:5764–5774.

    CAS  Google Scholar 

  48. Saika S. TGF-beta pathobiology in the eye. Lab Investig 2006;86:106–115.

    Article  CAS  PubMed  Google Scholar 

  49. Saika S, Kono-Saika S, Ohnishi Y, et al. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol 2004;164:651–663.

    CAS  PubMed  Google Scholar 

  50. Saika S, Kono-Saika S, Tanaka T, et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Invest 2004;84:1245–1258.

    Article  CAS  PubMed  Google Scholar 

  51. Stramer BM, Austin JS, Roberts AB, Fini ME. Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3. J Cell Physiol 2005;203:226–232.

    Article  CAS  PubMed  Google Scholar 

  52. Nakao A, Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest 1999;104:5–11.

    Article  CAS  PubMed  Google Scholar 

  53. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003;125:178–191.

    Article  CAS  PubMed  Google Scholar 

  54. Terada Y, Hanada S, Nakao A, Kuwahara M, Sasaki S, Marumo F. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int 2002;61:94–98.

    Article  Google Scholar 

  55. Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003;14:1535–1548.

    Article  CAS  PubMed  Google Scholar 

  56. Huang M, Sharma S, Zhu LX, et al. IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest 2002;109:931–937.

    CAS  PubMed  Google Scholar 

  57. Pines M, Nagler A. Halofuginone: a novel antifibrotic therapy. Gen Pharmacol 1998;30:445–450.

    Article  CAS  PubMed  Google Scholar 

  58. McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol 2002;118:461–470.

    Article  CAS  PubMed  Google Scholar 

  59. Xavier S, Pike E, Fujii M, et al. Amelioration of radiation-induced fibrosis: Inhibition of transforming growth factor-β signaling by halofuginone. J Biol Chem 2004;279:15,167–15,176.

    Article  CAS  PubMed  Google Scholar 

  60. Laping NJ, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 2002;62:58–64.

    Article  CAS  PubMed  Google Scholar 

  61. Mori Y, Ishida W, Bhattacharyya S, Li Y, Platanias LC, Varga J. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor beta responses in skin fibroblasts. Arthritis Rheum 2004;50:4008–4021.

    Article  CAS  PubMed  Google Scholar 

  62. Hasegawa T, Nakao A, Sumiyoshi K, Tsuchihashi H, Ogawa H. SB-431542 inhibits TGF-beta-induced contraction of collagen gel by normal and keloid fibroblasts. J Dermatol Sci 2005;39:33–38.

    Article  CAS  PubMed  Google Scholar 

  63. Byfield SD, Major C, Laping NJ, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004;65:744–752.

    Article  CAS  Google Scholar 

  64. Tojo M, Hamashima Y, Hanyu A, et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci 2005;96:791–800.

    Article  CAS  PubMed  Google Scholar 

  65. Yeom SY, Jeoung D, Ha KS, Kim PH. Small interfering RNA (siRNA) targetted to Smad3 inhibits transforming growth factor-beta signaling. Biotechnol Lett 2004;26:699–703.

    Article  CAS  PubMed  Google Scholar 

  66. Liu XJ, Ruan CM, Gong XF, et al. Antagonism of transforming growth factor-beta signaling inhibits fibrosis-related genes. Biotechnol Lett 2005;27:1609–1615.

    Article  CAS  PubMed  Google Scholar 

  67. Cui Q, Kyun LS, Zhao B, Michael HF. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Clin Exp Nephrol 2005;24:3864–3874.

    CAS  Google Scholar 

  68. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650–1659.

    Article  CAS  PubMed  Google Scholar 

  69. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–867.

    Article  CAS  PubMed  Google Scholar 

  70. Moss SF, Blaser MJ. Mechanisms of disease: Inflammation and the origins of cancer. Nat Clin Pract Oncol 2005;2:90–97.

    Article  CAS  PubMed  Google Scholar 

  71. Nickoloff BJ, Ben Neriah Y, Pikarsky E. Inflammation and cancer: is the link as simple as we think? J Invest Dermatol 2005;124:x–xiv.

    Article  CAS  PubMed  Google Scholar 

  72. Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004;431:461–466.

    Article  CAS  PubMed  Google Scholar 

  73. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607–1615.

    CAS  PubMed  Google Scholar 

  74. Tian F, Byfield SD, Parks WT, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003;63:8284–8292.

    CAS  PubMed  Google Scholar 

  75. Mithani SK, Balch GC, Shiou SR, Whitehead RH, Datta PK, Beauchamp RD. Smad3 has a critical role in TGF-beta-mediated growth inhibition and apoptosis in colonic epithelial cells. J Surg Res 2004;117:296–305.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998;94:703–714.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Flanders, K.C. (2008). Smads in the Fibrotic Response: Findings in the Smad3 Knockout Mouse. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_37

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics