Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1580 Accesses

Abstract

Betaig-h3, as a secreted protein induced by transforming growth factor-β (TGF-β), has been shown to modulate cell adhesion, wound healing, apoptosis and tumorigenicity. Mutations of this gene result in single amino-acid changes in the Betaig-h3 protein and are related to the development of human corneal dystrophies. In addition, Betaig-h3 promoter is frequently silenced because of promoter methylation in human cancer cells. The data suggest that Betaig-h3 gene might play an important role in mediating the pivotal cellular functions of TGF-β signalings such as proliferation, apoptosis and anti-tumor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;2(1):22–29.

    Article  Google Scholar 

  2. Akhurst RJ, Derynck R. TGF-beta signaling in cancer-a double-edged sword. Trends Cell Biol 2001;11(11):S44–S51.

    Article  CAS  PubMed  Google Scholar 

  3. de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst 2000;92(17):1388–1402.

    Article  PubMed  Google Scholar 

  4. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3(11):807–821.

    Article  CAS  PubMed  Google Scholar 

  5. Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF. cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol 1992;11(7):511–522.

    Article  CAS  PubMed  Google Scholar 

  6. Munier FL, Korvatska E, Djemai A, et al. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet 1997;15(3):247–251.

    Article  CAS  PubMed  Google Scholar 

  7. LeBaron RG, Bezverkov KI, Zimber MP, Pavelec R, Skonier J, Purchio AF. Beta IG-H3, a novel secretory protein inducible by transforming growth factor-beta, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. J Invest Dermatol 1995;104(5):844–849.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS. Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J Biol Chem 2000; 275(40):30,907–30,915.

    Article  CAS  PubMed  Google Scholar 

  9. Kim JE, Kim SJ, Jeong HW, et al. RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene 2003;22:2045–2053.

    Article  CAS  PubMed  Google Scholar 

  10. Kim JE, Kim EH, Han EH, et al. A TGF-beta-inducible cell adhesion molecule, big-h3, is downregulated in melorheostosis and involved in osteogenesis. J Cell Biochem 2000;77:169–178.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Shao G, Piao CQ, Berenguer J, Hei TK. Down-regulation of Betaig-h3 gene is involved in the tumorigenesis in human bronchial epithelial cells induced by heavy-ion radiation. Radiat Res 2004; 162:655–659.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao YL, Piao CQ, Hei TK. Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells. Oncogene 2002;21: 7471–7477.

    Article  CAS  PubMed  Google Scholar 

  13. Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol 1998;10(5):647–653.

    Article  CAS  PubMed  Google Scholar 

  14. Albelda SM, Buck CA. Integrin and other cell adhesion molecules. FASEB J 1990;4(11):2868–2880.

    CAS  PubMed  Google Scholar 

  15. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285(5430):1028–1032.

    Article  CAS  PubMed  Google Scholar 

  16. Billings PC, Whitbeck JC, Adams CS, et al. The transforming growth factor-beta-inducible matrix protein (beta)ig-h3 interacts with fibronectin. J Biol Chem 2002;277(31):28,003–28,009.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JE, Park RW, Choi JY, et al. Molecular properties of wild-type and mutant betaIG-H3 proteins. Invest Ophthalmol Vis Sci 2002;43(3):656–661.

    PubMed  Google Scholar 

  18. Jeong HW, Kim IS. TGF-beta1 enhances betaig-h3-mediated keratinocyte cell migration through the alpha3beta1 integrin and PI3K. J Cell Biochem 2004;92(4):770–780.

    Article  CAS  PubMed  Google Scholar 

  19. Nam JO, Kim JE, Jeong HW, et al. Identification of the alphavbeta3 integrin-interacting motif of betaig-h3 and its anti-angiogenic effect. J Biol Chem 2003;278(28):25,902–25,909.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JE, Jeong HW, Nam JO, et al. Identification of motifs in the fasciclin domains of the transforming growth factor-beta-induced matrix protein betaig-h3 that interact with the alphavbeta5 integrin. J Biol Chem 2002;277(48):46,159–46,165.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson JW, Mikesh MF, Wheeler EF, LeBaron RG. Developmental expression patterns of Beta-ig (betaIG-H3) and its function as a cell adhesion protein. Mech Dev 2003;120(8):851–864.

    Article  CAS  PubMed  Google Scholar 

  22. Billings PC, Herrick DJ, Kucich U, et al. Extracellular matrix and nuclear localization of beta ig-h3 in human bladder smooth muscle and fibroblast cells. J Cell Biochem 2000;79(2):261–273.

    Article  CAS  PubMed  Google Scholar 

  23. Pupa SM, Menard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 2002;192(3):259–267.

    Article  CAS  PubMed  Google Scholar 

  24. Morand S, Buchillier V, Maurer F, et al. Induction of apoptosis in human corneal and HeLa cells by mutated BIGH3. Invest Ophthalmol Vis Sci 2003;44(7):2973–2979.

    Article  PubMed  Google Scholar 

  25. Kim JE, Kim SJ, Jeong HW, et al. RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene 2003;22(13):2045–2053.

    Article  CAS  PubMed  Google Scholar 

  26. Billings PC, Herrick DJ, Kucich U, et al. Extracellular matrix and nuclear localization of betaig-h3 in human bladder smooth muscle and fibroblast cells. J Cell Biochem 2000;79(2):261–273.

    Article  CAS  PubMed  Google Scholar 

  27. Billings PC, Herrick DJ, Howard PS, Kucich U, Engelsberg BN, Rosenbloom J. Expression of betaig-h3 by human bronchial smooth muscle cells: localization To the extracellular matrix and nucleus. Am J Respir Cell Mol Biol 2000;22(3):352–359.

    CAS  PubMed  Google Scholar 

  28. Petersen I, Langreck H, Wolf G, et al. Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 1997;75(1):79–86.

    CAS  PubMed  Google Scholar 

  29. Brezinova J, Zemanova Z, Cermak J, Michalova K. Fluorescence in situ hybridization confirmation of 5q deletions in patients with hematological malignancies. Cancer Genet Cytogenet 2000;117(1):45–49.

    Article  CAS  PubMed  Google Scholar 

  30. Peralta RC, Casson AG, Wang RN, Keshavjee S, Redston M, Bapat B. Distinct regions of frequent loss of heterozygosity of chromosome 5p and 5q in human esophageal cancer. Int J Cancer 1998;78(5):600–605.

    Article  CAS  PubMed  Google Scholar 

  31. Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO. APC mutations are infrequent but present in human lung cancer. Cancer Lett 2004;207(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  32. Brezinova J, Zemanova Z, Cermak J, Michalova K. Fluorescence in situ hybridization confirmation of 5q deletions in patients with hematological malignancies. Cancer Genet Cytogenet 2000;117(1):45–49.

    Article  CAS  PubMed  Google Scholar 

  33. Peralta RC, Casson AG, Wang RN, Keshavjee S, Redston M, Bapat B. Distinct regions of frequent loss of heterozygosity of chromosome 5p and 5q in human esophageal cancer. Int J Cancer 1998;78(5): 600–605.

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Zhao Y, Kemp BL, Amos CI, Siciliano MJ, Spitz MR. Chromosome 5 aberrations and genetic predisposition to lung cancer. Int J Cancer 1998;79(5):490–493.

    Article  CAS  PubMed  Google Scholar 

  35. Genini M, Schwalbe P, Scholl FA, Schafer BW. Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma. Int J Cancer 1996;66(4):571–577.

    Article  CAS  PubMed  Google Scholar 

  36. Skonier J, Bennett K, Rothwell V, et al. Beta ig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol 1994;13(6):571–584.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao YL, Piao CQ, Hei TK. Overexpression of Betaig-h3 gene downregulates integrin alpha5beta1 and suppresses tumorigenicity in radiation-induced tumorigenic human bronchial epithelial cells. Br J Cancer 2002;86(12):1923–1928.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao YL, El-Gabry M, Hei TK. Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Mol Carcinogen 2006;45(2):84–92.

    Article  CAS  Google Scholar 

  39. Schiller JH, Bittner G. Loss of the tumorigenic phenotype with in vitro, but not in vivo, passaging of a novel series of human bronchial epithelial cell lines: possible role of an alpha 5/beta 1-integrin-fibronectin interaction. Cancer Res 1995;55(24):6215–6221.

    CAS  PubMed  Google Scholar 

  40. Adachi M, Taki T, Higashiyama M, Kohno N, Inufusa H, Miyake M. Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin Cancer Res 2000;6(1):96–101.

    CAS  PubMed  Google Scholar 

  41. Saito T, Kimura M, Kawasaki T, Sato S, Tomita Y. Correlation between integrin alpha 5 expression and the malignant phenotype of transitional cell carcinoma. Br J Cancer 1996;73(3):327–331.

    CAS  PubMed  Google Scholar 

  42. Beliveau A, Berube M, Rousseau A, Pelletier G, Guerin SL. Expression of integrin alpha5beta1 and MMPs associated with epithelioid morphology and malignancy of uveal melanoma. Invest Ophthalmol Vis Sci 2000;41(8):2363–2372.

    CAS  PubMed  Google Scholar 

  43. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bc1-2 expression. Proc Natl Acad Sci USA 1995;92(13):6161–6165.

    Article  CAS  PubMed  Google Scholar 

  44. Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res 1999;76:1–20.

    Article  CAS  PubMed  Google Scholar 

  45. Sheppard D. Epithelial integrins. Bioessays 1996;18(8):655–660.

    Article  CAS  PubMed  Google Scholar 

  46. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.

    Article  CAS  PubMed  Google Scholar 

  47. Kelly DL, Rizzino A. Growth regulatory factors and carcinogenesis: the roles played by transforming growth factor β, its receptors and signaling pathways. Anticancer Res 1999;19:4791–4808.

    CAS  PubMed  Google Scholar 

  48. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271(5247):350–353.

    Article  CAS  PubMed  Google Scholar 

  49. Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999;18(20):3098–3103.

    Article  CAS  PubMed  Google Scholar 

  50. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004;22:4632–4642.

    Article  CAS  PubMed  Google Scholar 

  51. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003;3:253–266.

    Article  CAS  PubMed  Google Scholar 

  52. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002;21:5427–5440.

    Article  CAS  PubMed  Google Scholar 

  53. Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zho YL. Epigenetic inactivation of TGFBI gene in human cancer cells. Cancer Res 2006;66(9):4566–4573.

    Article  CAS  PubMed  Google Scholar 

  54. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29(2):117–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Zhao, Y., Hei, T.K. (2008). Role of Betaig-h3 Gene in Carcinogenesis. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics