Skip to main content

Bone Morphogenetic Proteins/Growth Differentiation Factors and Smad Activation in Ovarian Granulosa Cells and Carcinoma

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1609 Accesses

Abstract

The ligands of the transforming growth factor β (TGF-β) superfamily are important paracrine/autocrine regulators of the ovarian follicular development. This group includes TGF-β. activins, bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs), and others. Nine BMPs and GDFs are expressed in the ovary, with a well-conserved pattern of expression among mammalian species. Oocytes express BMP6, BMP15, and GDF9: theca cells express BMP3, BMP3b, BMP4, and BMP7; and granulosa cells express BMP2 and BMP5. In vivo studies have revealed the importance of GDF9 and BMP15 in the control of early follicular growth and ovulation. In vitro, most of the BMPs and GDFs induce granulosa cell proliferation but reduce follicle stimulating hormone (FSH)-induced progesterone production, thus delaying the differentiation process.

The general mechanism of the signaling pathway for TGF-β family members has been well described. The ligands interact with type II and type I serine/threonine kinase receptors leading to the activation of two sets of downstream Smad-transcriptional factors. Owing to their common evolutionary origin, more than thirty related members of the TGF-β superfamily likely interact with seven type I (ALK) and five type II receptors, thereby activating Smad proteins. Instead of purifying the GDF9 receptors from granulosa cells for their identification, we hypothesized that GDF9 activates the known serine/threonine kinase receptors. We demonstrated the ability of the BMP receptor type II (BMPRII) ectodomain to block GDF9 stimulation of rat granulosa cell proliferation. In a GDF9-nonresponsive cell line, overexpression of the TGF-β type I receptor, ALK5, but not any other six type I receptors, conferred GDF9 responsiveness. The predicted role of BMPRII and ALK5 as type II and type I receptors, respectively, for GDF9 was validated in granulosa cells following the suppression of endogenous BMPRII and ALK5 expression using gene “knockdown” approaches. In parallel, Moore et al. have shown that BMP15, the GDF9 paralog, is likely to signal in granulosa cells by binding to BMPRII and ALK6. Less is known about the receptors involved in the signaling of the other ovarian BMPs and GDFs in granulosa cells. Ligands of the TGF-β superfamily occupy a central position in the signaling networks that control the growth and differentiation of cells. However, in the ovary, data are limited on the involvement and the disruption of BMPs and GDFs pathways in granulosa and epithelium cell tumor formation.

Identification of GDF9 receptors in granulosa cells based on the coevolution of ligands and receptors has proved that evolutionary tracing of polypeptide ligands, receptors, and downstream signaling molecules in their respective subgenomes verifies a new paradigm for hormone research. These studies suggested that more than thirty ligands of the TGF-β family interact with a limited number of receptors in a combinatorial manner to activate two downstream Smad pathways. In granulosa cells and ovarian cancer cells, identification of the components of the Smad-dependent signaling pathway for the nine ovarian BMPs and GDFs and its multilevel regulations should be pursued. These studies will be essential for identification of potential alterations in the BMPs and GDFs signaling leading to carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev 2000;21:200–214.

    Article  CAS  PubMed  Google Scholar 

  2. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev 1994;15:725–751.

    CAS  PubMed  Google Scholar 

  3. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002;23:787–823.

    Article  CAS  PubMed  Google Scholar 

  4. Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJ. Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J Biol Chem 2005;280:32,122–32,132.

    Article  CAS  PubMed  Google Scholar 

  5. Constam DB, Robertson EJ. Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 1999;144:139–149.

    Article  CAS  PubMed  Google Scholar 

  6. Wolfman NM, McPherron AC, Pappano WN, et al. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 2003;100:15,842–15,846.

    Article  CAS  PubMed  Google Scholar 

  7. Ge G, Hopkins DR, Ho WB, Greenspan DS. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells. Mol Cell Biol 2005;25:5846–5858.

    Article  CAS  PubMed  Google Scholar 

  8. Vitt UA, Hsu SY, Hsueh AJ. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 2001;15:681–694.

    Article  CAS  PubMed  Google Scholar 

  9. Scheufler C, Sebald W, Hulsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 1999;287:103–115.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson TB, Woodruff TK, Jardetzky TS. Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. EMBO J 2003;22:1555–1566.

    Article  CAS  PubMed  Google Scholar 

  11. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996;383:531–535.

    Article  CAS  PubMed  Google Scholar 

  12. McNatty KP, Moore LG, Hudson NL, et al. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 2004;128:379–386.

    Article  CAS  PubMed  Google Scholar 

  13. Hanrahan JP, Gregan SM, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 2004;70:900–909.

    Article  CAS  PubMed  Google Scholar 

  14. Vitt UA, McGee EA, Hayashi M, Hsueh AJ. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 2000;141:3814–3820.

    Article  CAS  PubMed  Google Scholar 

  15. McGee EA, Perlas E, LaPolt PS, Tsafriri A, Hsueh AJ. Follicle-stimulating hormone enhances the development of preantral follicles in juvenile rats. Biol Reprod 1997;57:990–998.

    Article  CAS  PubMed  Google Scholar 

  16. Galloway SM, McNatty KP, Cambridge LM, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 2000;25:279–283.

    Article  CAS  PubMed  Google Scholar 

  17. Moore RK, Erickson GF, Shimasaki S. Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals? Trends Endocrinol Metab 2004;15:356–361.

    CAS  PubMed  Google Scholar 

  18. Juengel JL, Hudson NL, Whiting L, McNatty KP. Effects of immunization against bone morphogenetic protein 15 and growth differentiation factor 9 on ovulation rate, fertilization, and pregnancy in ewes. Biol Reprod 2004;70:557–561.

    Article  CAS  PubMed  Google Scholar 

  19. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 2004;75:106–111.

    Article  PubMed  Google Scholar 

  20. Yan C, Wang P, DeMayo J, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 2001;15:854–866.

    Article  CAS  PubMed  Google Scholar 

  21. Su YQ, Wu X, O’Brien MJ, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 2004;276:64–73.

    Article  CAS  PubMed  Google Scholar 

  22. Lee WS, Otsuka F, Moore RK, Shimasaki S. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod 2001;65:994–999.

    Article  CAS  PubMed  Google Scholar 

  23. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995;9:2808–2820.

    Article  CAS  PubMed  Google Scholar 

  24. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995;9:2795–2807.

    Article  CAS  PubMed  Google Scholar 

  25. Pierre A, Pisselet C, Dupont J, Bontoux M, Monget P. Bone morphogenetic protein 5 expression in the rat ovary: biological effects on granulosa cell proliferation and steroidogenesis. Biol Reprod 2005;73:1102–1108.

    Article  CAS  PubMed  Google Scholar 

  26. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ. Mice lacking Bmp6 function. Dev Genet 1998;22:321–339.

    Article  CAS  PubMed  Google Scholar 

  27. Kingsley DM, Bland AE, Grubber JM, et al. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 1992;71:399–410.

    Article  CAS  PubMed  Google Scholar 

  28. Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 2000;275:39,523–39,528.

    Article  CAS  PubMed  Google Scholar 

  29. Vitt UA, Hayashi M, Klein C, Hsueh AJ. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000;62:370–377.

    Article  CAS  PubMed  Google Scholar 

  30. Otsuka F, Moore RK, Shimasaki S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem 2001;276:32,889–32,895.

    Article  CAS  PubMed  Google Scholar 

  31. Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,-6 and-7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 2004;127:239–254.

    Article  CAS  PubMed  Google Scholar 

  32. Souza CJ, Campbell BK, McNeilly AS, Baird DT. Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction 2002;123:363–369.

    Article  CAS  PubMed  Google Scholar 

  33. Shimasaki S, Zachow RJ, Li D, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA 1999;96:7282–7287.

    Article  CAS  PubMed  Google Scholar 

  34. Pierre A, Pisselet C, Dupont J, et al. Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J Mol Endocrinol 2004;33:805–817.

    Article  CAS  PubMed  Google Scholar 

  35. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 2001;276:11,387–11,392.

    Article  CAS  PubMed  Google Scholar 

  36. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 1999;13:1035–1048.

    Article  CAS  PubMed  Google Scholar 

  37. Gui LM, Joyce IM. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol Reprod 2005;72:195–199.

    Article  CAS  PubMed  Google Scholar 

  38. Elvin JA, Yan C, Matzuk MM. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proc Natl Acad Sci USA 2000;97:10,288–10,293.

    Article  CAS  PubMed  Google Scholar 

  39. Varani S, Elvin JA, Yan C, et al. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol 2002;16:1154–1167.

    Article  CAS  PubMed  Google Scholar 

  40. Pangas SA, Jorgez CJ, Matzuk MM. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J Biol Chem 2004;279:32,281–32,286.

    Article  CAS  PubMed  Google Scholar 

  41. Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  42. ten Dijke P, Ichijo H, Franzen P, et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 1993;8:2879–2887.

    CAS  PubMed  Google Scholar 

  43. Lopez-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell 1993;73:1435–1444.

    Article  CAS  PubMed  Google Scholar 

  44. Lewis KA, Gray PC, blount AL, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 2000;404:411–414.

    Article  CAS  PubMed  Google Scholar 

  45. Lebrin F, Goumans MJ, Jonker L, et al. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 2004;23:4018–4028.

    Article  CAS  PubMed  Google Scholar 

  46. Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature 2000;403:385–389.

    Article  CAS  PubMed  Google Scholar 

  47. Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signalling by the activin receptor complex. Mol Cell Biol 1996;16:1066–1073.

    CAS  PubMed  Google Scholar 

  48. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature 1994;370:341–347.

    Article  CAS  PubMed  Google Scholar 

  49. Mathews LS, Vale WW. Characterization of type II activin receptors. Binding, processing, and phosphorylation. J Biol Chem 1993;268:19,013–19,018.

    CAS  PubMed  Google Scholar 

  50. Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995;14:2199–2208.

    CAS  PubMed  Google Scholar 

  51. Greenwald J, Groppe J, Gray P, et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 2003;11:605–617.

    Article  CAS  PubMed  Google Scholar 

  52. Kirsch T, Sebald W, Dreyer MK. Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 2000;7:492–496.

    Article  CAS  PubMed  Google Scholar 

  53. Attisano L, Tuen Lee-Hoeflich S. The Smads. Genome Biol 2001;2:REVIEWS3010.1–3010.8.

    Article  Google Scholar 

  54. Kretzschmar M, Massagué J. SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 1998;8:103–111.

    Article  CAS  PubMed  Google Scholar 

  55. Chen YG, Massagué J. Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J Biol Chem 1999;274:3672–3677.

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe R, Yamada Y, Ihara Y, et al. The MH1 domains of smad2 and smad3 are involved in the regulation of the ALK7 signals. Biochem Biophys Res Commun 1999;254:707–712.

    Article  CAS  PubMed  Google Scholar 

  57. Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000;19:1745–1754.

    Article  PubMed  Google Scholar 

  58. Wrana JL. Crossing Smads. Sci STKE 2000;2000:RE1–RE9.

    CAS  Google Scholar 

  59. Nakao A, Afrakhte M. Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631–635.

    Article  CAS  PubMed  Google Scholar 

  60. Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997;89:1165–1173.

    Article  CAS  PubMed  Google Scholar 

  61. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998;12:186–197.

    Article  CAS  PubMed  Google Scholar 

  62. Ishisaki A, Yamato K, Hashimoto S, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem 1999;274:13,637–13,642.

    Article  CAS  PubMed  Google Scholar 

  63. Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 1999;274:37,413–37,420.

    Article  CAS  PubMed  Google Scholar 

  64. Lutz M, Knaus P. Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal 2002;14:977–988.

    Article  CAS  PubMed  Google Scholar 

  65. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  66. Vitt UA, Mazerbourg S, Klein C, Hsueh AJ. Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod 2002;67:473–480.

    Article  CAS  PubMed  Google Scholar 

  67. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998;17:3091–3100.

    Article  CAS  PubMed  Google Scholar 

  68. Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 2002;277:4883–4891.

    Article  CAS  PubMed  Google Scholar 

  69. Monteiro RM, de Sousa Lopes SM; Korchynskyi O, ten Dijke P, Mummery CL. Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J Cell Sci 2004;117:4653–4663.

    Article  CAS  PubMed  Google Scholar 

  70. Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M, Miyazono K. Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol Biol Cell 2000;11:555–565.

    CAS  PubMed  Google Scholar 

  71. Mazerbourg S, Klein C, Roh J, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol 2004;18:653–665.

    Article  CAS  PubMed  Google Scholar 

  72. Kaivo-Oja N, Mottershead DG, Mazerbourg S, et al. Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. J Clin Endocrinol Metab 2005;90:271–278.

    Article  CAS  PubMed  Google Scholar 

  73. Roh JS, Bondestam J, Mazerbourg S, et al. Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology 2003;144:172–178.

    Article  CAS  PubMed  Google Scholar 

  74. Kaivo-Oja N, Bondestam J, Kamarainen M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab 2003;88:755–762.

    Article  CAS  PubMed  Google Scholar 

  75. Schilling B, Yeh J. Expression of transforming growth factor (TGF)-betal, TGF-beta2, and TGF-beta3 and of type I and II TGF-beta receptors during the development of the human fetal ovary. Fertil Steril 1999;72:147–153.

    Article  CAS  PubMed  Google Scholar 

  76. Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol 2003;1:9.

    Article  PubMed  Google Scholar 

  77. Qu J, Godin PA, Nisolle M, Donnez J. Expression of receptors for insulin-like growth factor-I and transforming growth factor-beta in human follicles. Mol Hum Reprod 2000;6:137–145.

    Article  CAS  PubMed  Google Scholar 

  78. Xu J, Oakley J, McGee EA. Stage-specific expression of Smad2 and Smad3 during folliculogenesis. Biol Reprod 2002;66:1571–1578.

    Article  CAS  PubMed  Google Scholar 

  79. Larsson J, Goumans MJ, Sjostrand LJ, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 2001;20:1663–1673.

    Article  CAS  PubMed  Google Scholar 

  80. Tomic D, Brodie SG, Deng C, et al. Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod 2002;66:917–923.

    Article  CAS  PubMed  Google Scholar 

  81. Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P, Flaws JA. Ovarian follicle development requires Smad3. Mol Endocrinol 2004;18:2224–2240.

    Article  CAS  PubMed  Google Scholar 

  82. Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem 2003;278:304–310.

    Article  CAS  PubMed  Google Scholar 

  83. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 2002;21:1743–1753.

    Article  CAS  PubMed  Google Scholar 

  84. Liao WX, Moore RK, Otsuka F, Shimasaki S. Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J Biol Chem 2003;278:3713–3719.

    Article  CAS  PubMed  Google Scholar 

  85. Nishimatsu S, Thomsen GH. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech Dev 1998;74:75–88.

    Article  CAS  PubMed  Google Scholar 

  86. Butler SJ, Dodd J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 2003;38:389–401.

    Article  CAS  PubMed  Google Scholar 

  87. Bondestam J, Kaivo-oja N, Kallio J, et al. Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells. Mol Cell Endocrinol 2002;195:79–88.

    Article  CAS  PubMed  Google Scholar 

  88. Mulsant P, Lecerf F, Fabre S, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc Natl Acad Sci USA 2001;98:5104–5109.

    Article  CAS  PubMed  Google Scholar 

  89. Wilson T, Wu XY, Juengel JL, et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 2001;64:1225–1235.

    Article  CAS  PubMed  Google Scholar 

  90. Souza CJ, MacDougall C, Campbell BK, McNeilly AS, Baird DT. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J Endocrinol 2001;169:R1–R6.

    Article  CAS  PubMed  Google Scholar 

  91. McNatty KP, Kieboom LE, McDiarmid J, Heath DA, Lun S. Adenosine cyclic 3′,5′-monophosphate and steroid production by small ovarian follicles from Booroola ewes with and without a fecundity gene. J Reprod Fertil 1986;76:471–480.

    CAS  PubMed  Google Scholar 

  92. Fabre S, Pierre A, Pisselet C, et al. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality. J Endocrinol 2003;177:435–444.

    Article  CAS  PubMed  Google Scholar 

  93. Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci USA 2001;98:7994–7999.

    Article  CAS  PubMed  Google Scholar 

  94. Su YQ, Wigglesworth K, Pendola FL, O’Brien MJ, Eppig JJ. Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 2002;143:2221–2232.

    Article  CAS  PubMed  Google Scholar 

  95. Eng C. To be or not to BMP. Nat Genet 2001;28:105–107.

    Article  CAS  PubMed  Google Scholar 

  96. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000:103:295–309.

    Article  PubMed  Google Scholar 

  97. Nissinen L, Pirila L, Heino J. Bone morphogenetic protein-2 is a regulator of cell adhesion. Exp Cell Res 1997;230:377–385.

    Article  CAS  PubMed  Google Scholar 

  98. Ide H, Yoshida T, Matsumoto N, et al. Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 1997;57:5022–5027.

    CAS  PubMed  Google Scholar 

  99. Hjertner O, Hjorth-Hansen H, Borset M, Seidel C, Waage A, Sundan A. Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 2001;97:516–522.

    Article  CAS  PubMed  Google Scholar 

  100. Kim IY, Lee DH, Ahn HJ, et al. Expression of bone morphogenetic protein receptors type-IA,-IB and-II correlates with tumor grade in human prostate cancer tissues. Cancer Res 2000;60:2840–2844.

    CAS  PubMed  Google Scholar 

  101. Schumer ST, Cannistra SA. Granulosa cell tumor of the ovary. J Clin Oncol 2003;21:1180–1189.

    Article  PubMed  Google Scholar 

  102. Fuller PJ, Chu S. Signalling pathways in the molecular pathogenesis of ovarian granulosa cell tumours. Trends Endocrinol Metab 2004;15:122–128.

    Article  CAS  PubMed  Google Scholar 

  103. Nilson JH, Abbud RA, Keri RA, Quirk CC. Chronic hypersecretion of luteinizing hormone in transgenic mice disrupts both ovarian and pituitary function, with some effects modified by the genetic background. Recent Prog Horm Res 2000;55:69–89; discussion 89–91.

    CAS  PubMed  Google Scholar 

  104. Kananen K, Markkula M, Rainio E, Su JG, Hsueh AJ, Huhtaniemi IT. Gonadal tumorigenesis in transgenic mice bearing the mouse inhibin alpha-subunit promoter/simian virus T-antigen fusion gene: characterization of ovarian tumors and establishment of gonadotropin-responsive granulosa cell lines. Mol Endocrinol 1995;9:616–627.

    Article  CAS  PubMed  Google Scholar 

  105. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 1992;360:313–319.

    Article  CAS  PubMed  Google Scholar 

  106. Boerboom D, Paquet M, Hsieh M, et al. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res 2005;65:9206–9215.

    Article  CAS  PubMed  Google Scholar 

  107. Matzuk MM, Kumar TR, Shou W, et al. Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Recent Prog Horm Res 1996;51:123–154; discussion 155–157.

    CAS  PubMed  Google Scholar 

  108. Lappohn RE, Burger HG, Bouma J, Bangah M, Krans M, de Bruijn HW. Inhibin as a maker for granulosa-cell tumors. N Engl J Med 1989;321:790–793.

    Article  CAS  PubMed  Google Scholar 

  109. Fuller PJ, Chu S, Jobling T, Mamers P, Healy DL, Burger HG. Inhibin subunit gene expression in ovarian cancer. Gynecol Oncol 1999;73:273–279.

    Article  CAS  PubMed  Google Scholar 

  110. Kananen K, Markkula M, Mikola M, Rainio EM, McNeilly A. Huhtaniemi I. Gonadectomy permits adrenocortical tumorigenesis in mice transgenic for the mouse inhibin alpha-subunit promoter simian virus 40 T-antigen fusion gene: evidence for negative autoregulation of the inhibin alpha-subunit gene. Mol Endocrinol 1996;10:1667–1677.

    Article  CAS  PubMed  Google Scholar 

  111. Juengel JL, Quirke LD, Tisdall DJ, Smith P, Hudson NL, McNatty KP. Gene expression in abnormal ovarian structures of ewes homozygous for the inverdale prolificacy gene. Biol Reprod 2000;62:1467–1478.

    Article  CAS  PubMed  Google Scholar 

  112. Fuller PJ, Zumpe ET, Chu S, Mamers P, Burger HG. Inhibin-activin receptor subunit gene expression in ovarian tumors. J Clin Endocrinol Metab 2002;87:1395–1401.

    Article  CAS  PubMed  Google Scholar 

  113. Wiater E, Vale W. Inhibin is an antagonist of bone morphogenetic protein signaling. J Biol Chem 2003;278:7934–7941.

    Article  CAS  PubMed  Google Scholar 

  114. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001;22:255–288.

    Article  CAS  PubMed  Google Scholar 

  115. Henriksen R, Gobl A, Wilander E, Oberg K, Miyazono K, Funa K. Expression and prognostic significance of TGF-beta isotypes, latent TGF-beta 1 binding protein, TGF-beta type I and type II receptors, and endoglin in normal ovary and ovarian neoplasms. Lab Invest 1995;73:213–220.

    CAS  PubMed  Google Scholar 

  116. Yamada SD, Baldwin RL, Karlan BY. Ovarian carcinoma cell cultures are resistant to TGF-betal-mediated growth inhibition despite expression of functional receptors. Gynecol Oncol 1999;75:72–77.

    Article  CAS  PubMed  Google Scholar 

  117. Ito I, Minegishi T, Fukuda J, Shinozaki H, Auersperg N, Leung PC. Presence of activin signal transduction in normal ovarian cells and epithelial ovarian carcinoma. Br J Cancer 2000;82:1415–1420.

    CAS  PubMed  Google Scholar 

  118. Dunfield LD, Dwyer EJ, Nachtigal MW. TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology 2002;143:1174–1181.

    Article  CAS  PubMed  Google Scholar 

  119. Steller MD, Shaw TJ, Vanderhyden BC, Ethier JF. Inhibin resistance is associated with aggressive tumorigenicity of ovarian cancer cells. Mol Cancer Res 2005;3:50–61.

    CAS  PubMed  Google Scholar 

  120. Lynch MA, Nakashima R, Song H, et al. Mutational analysis of the transforming growth factor beta receptor type II gene in human ovarian carcinoma. Cancer Res 1998;58:4227–4232.

    CAS  PubMed  Google Scholar 

  121. Wang D, Kanuma T, Mizunuma H, et al. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res 2000;60:4507–4512.

    CAS  PubMed  Google Scholar 

  122. Chen T, Triplett J, Dehner B, et al. Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res 2001;61:4679–4682.

    CAS  PubMed  Google Scholar 

  123. Welt CK, Lambert-Messerlian G, Zheng W, Crowley WF, Jr., Schneyer AL. Presence of activin, inhibin, and follistatin in epithelial ovarian carcinoma. J Clin Endocrinol Metab 1997;82:3720–3727.

    Article  CAS  PubMed  Google Scholar 

  124. Choi KC, Kang SK, Nathwani PS, Cheng KW, Auersperg N, Leung PC. Differential expression of activin/inhibin subunit and activin receptor mRNAs in normal and neoplastic ovarian surface epithelium (OSE). Mol Cell Endocrinol 2001;174:99–110.

    Article  CAS  PubMed  Google Scholar 

  125. Di Simone N, Crowley WF, Jr., Wang QF, Sluss PM, Schneyer AL. Characterization of inhibin/activin subunit, follistatin, and activin type II receptors in human ovarian cancer cell lines: a potential role in autocrine growth regulation. Endocrinology 1996;137:486–494.

    Article  PubMed  Google Scholar 

  126. Shepherd TG, Nachtigal MW. Identification of a putative autocrine bone morphogenetic proteinsignaling pathway in human ovarian surface epithelium and ovarian cancer cells. Endocrinology 2003;144:3306–3314.

    Article  CAS  PubMed  Google Scholar 

  127. Schindl M, Schoppmann SF, Strobel T, et al. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors. Clin Cancer Res 2003;9:779–785.

    CAS  PubMed  Google Scholar 

  128. Norton JD. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 2000;113(Pt 22):3897–3905.

    CAS  PubMed  Google Scholar 

  129. Leo CP, Hsu SY, Hsueh AJ. Hormonal genomics. Endocr Rev 2002;23:369–381.

    Article  CAS  PubMed  Google Scholar 

  130. Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 2002;250:231–250.

    CAS  PubMed  Google Scholar 

  131. Sudo S, Avsian-Kretchmer O, Wang LS, Hsueh AJ. Protein related to DAN and cerberus is a bone morphogenetic protein antagonist that participates in ovarian paracrine regulation. J Biol Chem 2004;279:23,134–23,141.

    Article  CAS  PubMed  Google Scholar 

  132. Green JB, New HV, Smith JC. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 1992;71:731–739.

    Article  CAS  PubMed  Google Scholar 

  133. Dyson S, Gurdon JB. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 1998;93:557–568.

    Article  CAS  PubMed  Google Scholar 

  134. Onichtchouk D, Chen YG, Dosch R, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999;401:480–485.

    Article  CAS  PubMed  Google Scholar 

  135. Loveland KL, Bakker M, Meehan T, et al. Expression of Bambi is widespread in juvenile and adult rat tissues and is regulated in male germ cells. Endocrinology 2003;144:4180–4186.

    Article  CAS  PubMed  Google Scholar 

  136. Jaatinen R, Rosen V, Tuuri T, Ritvos O. Identification of ovarian granulosa cells as a novel site of expression for bone morphogenetic protein-3 (BMP-3/osteogenin) and regulation of BMP-3 messenger ribonucleic acids by chorionic gonadotropin in cultured human granulosa-luteal cells. J Clin Endocrinol Metab 1996;81:3877–3882.

    Article  CAS  PubMed  Google Scholar 

  137. Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-beta superfamily members in female fertility. Mol Cell Endocrinol 2000;159:1–5.

    Article  CAS  PubMed  Google Scholar 

  138. Lyons KM, Pelton RW, Hogan BL. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev 1989;3:1657–1668.

    Article  CAS  PubMed  Google Scholar 

  139. Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 2005;11:143–160.

    CAS  PubMed  Google Scholar 

  140. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 1998;12:1809–1817.

    Article  CAS  PubMed  Google Scholar 

  141. Laitinen M, Vuojolainen K, Jaatinen R, et al. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev 1998;78:135–140.

    Article  CAS  PubMed  Google Scholar 

  142. Aaltonen J, Laitinen MP, Vuojolainen K, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 1999;84:2744–2750.

    Article  CAS  PubMed  Google Scholar 

  143. Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol Reprod Dev 2005;70:11–19.

    Article  CAS  PubMed  Google Scholar 

  144. Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P, Dalbies-Tran R. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol Reprod 2004;71:1359–1366.

    Article  CAS  PubMed  Google Scholar 

  145. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995;9:131–136.

    Article  CAS  PubMed  Google Scholar 

  146. Hayashi M, McGee EA, Min G, et al. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 1999;140:1236–1244.

    Article  CAS  PubMed  Google Scholar 

  147. Jaatinen R, Laitinen MP, Vuojolainen K, et al. Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B. Mol Cell Endocrinol 1999;156:189–193.

    Article  CAS  PubMed  Google Scholar 

  148. Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod 1999;60:381–386.

    Article  CAS  PubMed  Google Scholar 

  149. Prochazka R, Nemcova L, Nagyova E, Kanka J. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles. Biol Reprod 2004;71:1290–1295.

    Article  CAS  PubMed  Google Scholar 

  150. Sidis Y, Fujiwara T, Leykin L, Isaacson K, Toth T, Schneyer AL. Characterization of inhibin/activin subunit, activin receptor, and follistatin messenger ribonucleic acid in human and mouse oocytes: evidence for activin’s paracrine signaling from granulosa cells to oocytes. Biol Reprod 1998;59:807–812.

    Article  CAS  PubMed  Google Scholar 

  151. Jaatinen R, Bondestam J, Raivio T, et al. Activation of the bone morphogenetic protein signaling pathway induces inhibin beta(B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa-luteal cells. J Clin Endocrinol Metab 2002;87:1254–1261.

    Article  CAS  PubMed  Google Scholar 

  152. Wu TC, Jih MH, Wang L, Wan YJ. Expression of activin receptor II and IIB mRNA isoforms in mouse reproductive organs and oocytes. Mol Reprod Dev 1994;38:9–15.

    Article  CAS  PubMed  Google Scholar 

  153. Cameron VA, Nishimura E, Mathews LS, Lewis KA, Sawchenko PE, Vale WW. Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary, and testis. Endocrinology 1994;134:799–808.

    Article  CAS  PubMed  Google Scholar 

  154. Zhao J, Taverne MA, van der Weijden GC, Bevers MM, van den Hurk R. Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II. Biol Reprod 2001;65:967–977.

    Article  CAS  PubMed  Google Scholar 

  155. Drummond AE, Le MT, Ethier JF, Dyson M, Findlay JK. Expression and localization of activin receptors, Smads, and beta glycan to the postnatal rat ovary. Endocrinology 2002;143:1423–1433.

    Article  CAS  PubMed  Google Scholar 

  156. Pangas SA, Rademaker AW, Fishman DA, Woodruff TK. Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. J Clin Endocrinol Metab 2002;87:2644–2657.

    Article  CAS  PubMed  Google Scholar 

  157. Eramaa M, Hilden K, Tuuri T, Ritvos O. Regulation of inhibin/activin subunit messenger ribonucleic acids (mRNAs) by activin A and expression of activin receptor mRNAs in cultured human granulosaluteal cells. Endocrinology 1995;136:4382–4389.

    Article  CAS  PubMed  Google Scholar 

  158. Osterlund C, Fried G. TGFbeta receptor types I and II and the substrate proteins Smad 2 and 3 are present in human oocytes. Mol Hum Reprod 2000;6:498–503.

    Article  CAS  PubMed  Google Scholar 

  159. He WW, Gustafson ML, Hirobe S, Donahoe PK. Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family. Dev Dyn 1993;196:133–142.

    CAS  PubMed  Google Scholar 

  160. Kano K, Notani A, Nam SY, Fujisawa M, Kurohmaru M, Hayashi Y. Cloning and studies of the mouse cDNA encoding Smad3. J Vet Med Sci 1999;61:213–219.

    Article  CAS  PubMed  Google Scholar 

  161. Yamamoto N, Christenson LK, McAllister JM, Strauss JF, 3rd. Growth differentiation factor-9 inhibits 3′5′-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab 2002;87:2849–2856.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Mazerbourg, S. (2008). Bone Morphogenetic Proteins/Growth Differentiation Factors and Smad Activation in Ovarian Granulosa Cells and Carcinoma. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics