Skip to main content

TGF-β Signaling in Homeostasis and Cancer

  • Chapter
  • 1627 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

TGF-β is a member of a large family of cytokines with a crucial role in embryonic development and tissue homeostasis. Disruption of the TGF-β signaling pathway has been implicated in many human diseases including cancer. In normal epithelial cells, TGF-β acts as a tumor suppressor by inhibiting cellular proliferation. During cancer progression, tumor cells escape from the TGF-β antiproliferative response either by acquiring mutations in components of the TGF-β pathway or by selectively inactivating the pathway that leads to cell cycle arrest. In the latter case, TGF-β becomes an oncogenic factor. Over the last years, some of the molecular mechanisms implicated in the TGF-β antiproliferative response have been elucidated and we are beginning to understand how TGF-β is transformed from an anti-tumorigenic factor into an oncogenic factor during cancer progression. This allows a better understanding of cancer biology and helps in the design of better therapeutic protocols against this deadly disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003;3:807–821.

    Article  CAS  PubMed  Google Scholar 

  2. Feng XH, Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.

    Article  CAS  PubMed  Google Scholar 

  3. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-β activation. J Cell Sci 2003; 116:217–224.

    Article  CAS  PubMed  Google Scholar 

  4. Massagué J. TGF-β signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  5. Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  6. Joan Massagué, David Wotton. Smad transcription factors. Genes Dev 2005;19:2783–2810.

    Article  PubMed  Google Scholar 

  7. Inman GJ, Hill CS. Stoichiometry of active smad-transcription factor complexes on DNA. J Biol Chem 2002;277:51,008–51,016.

    Article  CAS  PubMed  Google Scholar 

  8. ten Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem Sci 2004;29:265–273.

    Article  PubMed  Google Scholar 

  9. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  10. Xu L, Massagué J. Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 2004; 5:209–219.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 2003;100:8621–8623.

    Article  CAS  PubMed  Google Scholar 

  12. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22–29.

    Article  CAS  PubMed  Google Scholar 

  13. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  14. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006;24:99–146.

    Article  CAS  PubMed  Google Scholar 

  15. Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–223.

    Article  CAS  PubMed  Google Scholar 

  16. Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-β. J Biol Chem 2000;275:29,244–29,256.

    Article  CAS  PubMed  Google Scholar 

  17. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001;3:400–408.

    Article  CAS  PubMed  Google Scholar 

  18. Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO J 2000;19:5178–5193.

    Article  CAS  PubMed  Google Scholar 

  19. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 2002;110:19–32.

    Article  CAS  PubMed  Google Scholar 

  20. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 1994;8:1270–1284.

    Article  CAS  PubMed  Google Scholar 

  21. Kang Y, Chen CR, Massagué J. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003;11:915–926.

    Article  CAS  PubMed  Google Scholar 

  22. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 2000;407:592–598.

    Article  CAS  PubMed  Google Scholar 

  23. Siegel PM, Shu W, Massagué J. Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-β-mediated epithelial cell growth suppression. J Biol Chem 2003;278:35,444–35,450.

    Article  CAS  PubMed  Google Scholar 

  24. Dumont N, Arteaga CL. Targeting the TGF-β signaling network in human neoplasia. Cancer Cell 2003;3:531–536.

    Article  CAS  PubMed  Google Scholar 

  25. Wu JW, Hu M, Chai J, et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol Cell 2001;8:1277–1289.

    Article  CAS  PubMed  Google Scholar 

  26. Wolfraim LA, Fernandez TM, Mamura M, et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004;351:552–559.

    Article  CAS  PubMed  Google Scholar 

  27. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 2004;64:5200–5211.

    Article  CAS  PubMed  Google Scholar 

  28. Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor-β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 2005;25:8108–8125.

    Article  CAS  PubMed  Google Scholar 

  29. Warner BJ, Blain SW, Seoane J, Massagué J. Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol 1999;19:5913–5922.

    CAS  PubMed  Google Scholar 

  30. Staller P, Peukert K, Kiermaier A, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001;3:392–399.

    Article  CAS  PubMed  Google Scholar 

  31. Seoane J, Le HV, Massagué J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002;419:729–734.

    Article  CAS  PubMed  Google Scholar 

  32. Herold S, Wanzel M, Beuger V, et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 2002;10:509–521.

    Article  CAS  PubMed  Google Scholar 

  33. van de Wetering M, Sancho E, Verweij C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002;111:241–250.

    Article  PubMed  Google Scholar 

  34. Wu S, Cetinkaya C, Munoz-Alonso MJ, et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003;22:351–360.

    Article  CAS  PubMed  Google Scholar 

  35. Brenner C, Deplus R, Didelot C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 2005;24:336–346.

    Article  CAS  PubMed  Google Scholar 

  36. Lo RS, Wotton D, Massagué J. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 2005;20:128–136.

    Article  Google Scholar 

  37. Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 1994;269: 6271–6274.

    CAS  PubMed  Google Scholar 

  38. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537–549.

    Article  CAS  PubMed  Google Scholar 

  39. Yu L, Hebert MC, Zhang YE. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 2002;21:3749–3759.

    Article  CAS  PubMed  Google Scholar 

  40. Itoh S, Thorikay M, Kowanetz M, et al. Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses. J Biol Chem 2003;278:3751–3761.

    Article  CAS  PubMed  Google Scholar 

  41. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001;7:1267–1278.

    Article  CAS  PubMed  Google Scholar 

  42. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003;278:21,113–21,123.

    Article  CAS  PubMed  Google Scholar 

  43. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massagué J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100:8430–8435.

    Article  CAS  PubMed  Google Scholar 

  44. Yin JJ, Selander K, Chirgwin JM, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999;103:197–206.

    Article  CAS  PubMed  Google Scholar 

  45. Kang Y, He W, Tulley S, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005;102:13,909–13,914.

    Article  CAS  PubMed  Google Scholar 

  46. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2:584–593.

    Article  CAS  PubMed  Google Scholar 

  47. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011–1022.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Seoane, J. (2008). TGF-β Signaling in Homeostasis and Cancer. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics