Skip to main content

Mechanisms of Cell Cycle Regulation by TGF-β Disabled in Cancer

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume I

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Disabling the TGF-β signaling pathway is a widespread means by which carcinoma cells subvert the normally potent growth arresting effect of TGF-β to enable cancer cell growth. We have shown disrupted TGF-β signaling concomitant with loss of growth inhibition by TGF-β occurs early in endometrial carcinogenesis. As an effector of cell cycle arrest, TGF-β inhibits synthesis of certain cyclin/cdks and directly induces cdk inhibitors (CDKI), such as p15Ink4b(p15) and p21Waf1/Cip1(p21), to inhibit phosphorylation of Rb, thereby preventing progression to S phase. Although the level of the CDKI, p27Kip1(p27) is increased in a variety of TGF-β treated cells, evidence for the regulation of p27 by TGF-β in epithelial cells has largely been indirect. Now, we show that TGF-β dosedependently increases both nuclear and cytoplasmic levels of p27 in primary cultures of normal endometrial epithelial cells (EECs) by preventing its degradation through the downregulation of Skp2 and cks1, critical components of the SCFskp2 complex, that target p27 for ubiquitin-mediated degradation. Thus, the levels of p27 and Cks1/Skp2 are inversely regulated by TGF-β to achieve normal cell cycle arrest in late G1. In contrast, the lack of TGF-β signaling in primary endometrial carcinoma (ECA) cells promotes rapid proteasomal degradation of p27 for uncontrolled cell growth. The increase in p27 and decrease in Cks1/Skp2 is recapitulated in vivo in normal secretory phase endometrium (SE) compared to all grades of ECA, which show the reverse. Transient transfection of Smad2 into a TGF-β-responsive ECA cell line, HEC-1A, decreased the levels of cks1 and a small molecule inhibitor of TGF-β receptor I kinase (SD-208) blocked the ability of TGF-β to decrease cks1 and increase p27 indicating that these effects result from direct classic TGF-β signaling. Importantly, knocking down p27 with a siRNA approach blocked TGF-β mediated growth inhibition in HEC-1A, further substantiating that TGF-β mediates growth inhibition through p27 in these cells. In addition, we further show that estrogen causes MAPK-driven ubiquitin-mediated degradation of p27 for proliferation and that progesterone induces marked accumulation of p27 to block cell growth. Thus, our results suggest that TGF-β and ovarian hormones converge on the regulation of intracellular p27 levels as a major target for endometrial growth. Because ECA is an estrogen-induced cancer, related to unopposed estrogen, and progesterone is therapeutic for this disease, we propose that the pathogenesis of ECA may be related to both the lack of TGF-β signaling and the absence of progesterone (as in menopause and anovulation), causing continuous estrogen-driven proteasomal degradation of p27. Finally, soluble mediators derived from stromal cells in the ECA tumor microenvironment, but not from normal stromal cells, decrease the levels of p27 and increase the levels of cks1, while increasing growth of HEC-1A cells, implicating a role for stromal cells in endometrial carcinogenesis.

Temporally regulated ubiquitin-mediated destruction of cell cycle proteins precisely control the levels of proteins to block or induce cell cycle progression. Our results suggest that TGF-β negatively regulates destruction of p27 protein to maintain sufficient levels of this CDKI for cell cycle arrest. As such, TGF-β facilitates a counter-destruction mechanism of cell cycle regulation. As Skp2 and cks1 are markedly increased in ECA (and other human cancers) perpetuating destruction of p27 thereby permitting uncontrolled growth, these proteins may be novel rational targets for the prevention and therapy of this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005;24: 5764–5774.

    CAS  PubMed  Google Scholar 

  2. Bachman KE, Park BH. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol 2005;17:49–54.

    CAS  PubMed  Google Scholar 

  3. Valcourt U, Kowanetz M, Niimi H, Heldin C-H, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005;16:1987–2002.

    CAS  PubMed  Google Scholar 

  4. Roberts AB, Wakefield LM. The two faces of transforming growth factor-beta in carcinogenesis. Proc Natl Acad Sci USA 2003;100:8621–8623.

    CAS  PubMed  Google Scholar 

  5. Massagué J. G1 cell-cycle control and cancer. Nature 2004;432:298–306.

    PubMed  Google Scholar 

  6. Kurland JF, Tansey WP. Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2). Cancer Cell 2004;5:305–306.

    CAS  PubMed  Google Scholar 

  7. Latres E, Chiarle R, Schulman BA, et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA 2001;98:2515–2520.

    CAS  PubMed  Google Scholar 

  8. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 2003;13:41–47.

    CAS  PubMed  Google Scholar 

  9. Ben-Izhak O, Lahav-Baratz S, Meretyk S, et al. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip 1 in prostate cancer. J Urol 2003;170:241–245.

    CAS  PubMed  Google Scholar 

  10. Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999;1:193–199.

    CAS  PubMed  Google Scholar 

  11. Sutterluty H, Chatelain E, Marti A, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999;1:207–214.

    CAS  PubMed  Google Scholar 

  12. Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 2006;20:47–64.

    CAS  PubMed  Google Scholar 

  13. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3:807–821.

    CAS  PubMed  Google Scholar 

  14. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;3:531–536.

    CAS  PubMed  Google Scholar 

  15. Philipp-Staheli J, Payne SR, Kemp CJ. p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 2001;264:148–168.

    CAS  PubMed  Google Scholar 

  16. Hata A, Shi Y, Massagué J. TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 1998;4:257–262.

    CAS  PubMed  Google Scholar 

  17. Massagué J, Blain SW, Lo RS. TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    PubMed  Google Scholar 

  18. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999;10:303–360.

    CAS  PubMed  Google Scholar 

  19. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int 1997;51:1376–1382.

    CAS  PubMed  Google Scholar 

  20. Flaumenhaft R, Kojima S, Abe M, Rifkin DB. Activation of latent transforming growth factor beta. Adv Pharmacol 1993;24:51–76.

    CAS  PubMed  Google Scholar 

  21. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    CAS  PubMed  Google Scholar 

  22. Feng XH, Derynck R. Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.

    CAS  PubMed  Google Scholar 

  23. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 2005;24: 5742–5750.

    CAS  PubMed  Google Scholar 

  24. Pierreux CE, Nicolas FJ, Hill CS. Transforming growth factor-beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol 2000;20:9041–9054.

    CAS  PubMed  Google Scholar 

  25. Xu L, Chen YG, Massagué J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGF-beta-dependent phosphorylation. Nat Cell Biol 2000;2:559–562.

    CAS  PubMed  Google Scholar 

  26. Xu L, Massagué J. Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 2004;5: 209–219.

    CAS  PubMed  Google Scholar 

  27. Xu L, Alarcon C, Col S, Massagué J. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J Biol Chem 2003;278:42,569–42,577.

    CAS  PubMed  Google Scholar 

  28. Xu L, Kang Y, Col S, Massagué J. Smad2 nucleocytoplasmic shuttling by nucleoprins CAN/Nup214 and Nup153 feeds TGF beta signaling complexes in the cytoplasm and nucleus. Mol Cell 2002;10: 271–282.

    CAS  PubMed  Google Scholar 

  29. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003;5:410–421.

    PubMed  Google Scholar 

  30. Abdel-Wahab N, Wicks SJ, Mason RM, Chantry A. Decorin suppresses transforming growth factor-beta-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca2+-dependent phosphorylation of Smad2 at serine-240. Biochem J 2002; 362:643–649.

    CAS  PubMed  Google Scholar 

  31. Yakymovych I, ten Dijke P, Heldin C-H, Souchelnytskyi S. Regulation of Smad signaling by protein kinase C. FASEB J 2001;15:553–555.

    CAS  PubMed  Google Scholar 

  32. Ulloa L, Doody J, Massagué J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999;397:710–713.

    CAS  PubMed  Google Scholar 

  33. Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGF beta receptor and functions as an antagonist of TGF beta signaling. Cell 1997;89:1165–1173.

    CAS  PubMed  Google Scholar 

  34. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol Biol Cell 2001;12:3328–3339.

    CAS  PubMed  Google Scholar 

  35. Akhurst RJ, Derynck R, Balmain A. TGF-beta signaling in cancer — a double-edged sword. Trends Cell Biol 2001;11:S44–S51.

    CAS  PubMed  Google Scholar 

  36. Bierie B, Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev 2006;17:29–40.

    CAS  PubMed  Google Scholar 

  37. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGF-beta, and contact inhibition. Cell 1999;97:53–61.

    CAS  PubMed  Google Scholar 

  38. Balciunaite E, Spektor A, Lents NH, et al. Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol Cell Biol 2005;25:8166–8178.

    CAS  PubMed  Google Scholar 

  39. Cloud JE, Rogers C, Reza TL, et al. Mutant mouse models reveal the relative roles of E2F1 and E2F3 in vivo. Mol Cell Biol 2002;22:2663–2672.

    CAS  PubMed  Google Scholar 

  40. Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 2000;14:804–816.

    CAS  PubMed  Google Scholar 

  41. Gaubatz S, Lindeman GJ, Ishida S, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell 2000;6:729–735.

    CAS  PubMed  Google Scholar 

  42. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004; 18:2699–2711.

    CAS  PubMed  Google Scholar 

  43. Ortega S, Prieto I, Odajima J, et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003;35:25–31.

    CAS  PubMed  Google Scholar 

  44. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    CAS  PubMed  Google Scholar 

  45. Guadagno TM, Assoian RK. G1/S control of anchorage-independent growth in the fibroblast cell cycle. J Cell Biol 1991;115:1419–1425.

    CAS  PubMed  Google Scholar 

  46. Han EK, Guadagno TM, Dalton SL, Assoian RK. A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta1 control G1/S transit specifically. J Cell Biol 1993; 122:461–471.

    CAS  PubMed  Google Scholar 

  47. Assoian RK, Zhu X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 1997;9:93–98.

    CAS  PubMed  Google Scholar 

  48. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massagué J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1990;62:175–185.

    CAS  PubMed  Google Scholar 

  49. Satterwhite DJ, Moses HL. Mechanisms of transforming growth factor-beta1-induced cell cycle arrest. Invasion Metastasis 1994;14:309–318.

    CAS  PubMed  Google Scholar 

  50. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004;430:226–231.

    CAS  PubMed  Google Scholar 

  51. Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996;68:67–108.

    CAS  PubMed  Google Scholar 

  52. Ewen ME. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 1994;13:45–66.

    CAS  PubMed  Google Scholar 

  53. Ewen ME. Regulation of the cell cycle by the Rb tumor suppressor family. Results Probl Cell Differ 1998;22:149–179.

    CAS  PubMed  Google Scholar 

  54. Iavarone A, Massagué J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 1997;387:417–422.

    CAS  PubMed  Google Scholar 

  55. Kimura K, Tsuji T, Takada Y, Miki T, Narumiya S. Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem 2000;275:17,233–17,236.

    CAS  PubMed  Google Scholar 

  56. Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA 2003;100:15,548–15,553.

    CAS  PubMed  Google Scholar 

  57. Brown K, Bhowmick NA. Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling. Cell Cycle 2004;3:408–410.

    CAS  PubMed  Google Scholar 

  58. Kamaraju AK, Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 2005;280:1024–1036.

    CAS  PubMed  Google Scholar 

  59. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27–36.

    CAS  PubMed  Google Scholar 

  60. Nagahara H, Ezhevsky SA, Vocero-Akbani AM, Kaldis P, Solomon MJ, Dowdy SF. Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proc Natl Acad Sci USA 1999;96:14,961–14,966.

    CAS  PubMed  Google Scholar 

  61. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002;1602:73–87.

    CAS  PubMed  Google Scholar 

  62. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age [see comments]. Cell 1994;79:573–582.

    CAS  PubMed  Google Scholar 

  63. Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene [see comments]. Nature 1991;350:512–515.

    CAS  PubMed  Google Scholar 

  64. Okamoto A, Jiang W, Kim SJ, et al. Overexpression of human cyclin D1 reduces the transforming growth factor-beta (TGF-beta) type II receptor and growth inhibition by TGF-beta1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA 1994;91:11,576–11,580.

    CAS  PubMed  Google Scholar 

  65. Sandhu C, Garbe J, Bhattacharya N, et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol Cell Biol 1997;17:2458–2467.

    CAS  PubMed  Google Scholar 

  66. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257–261.

    CAS  PubMed  Google Scholar 

  67. Reynisdottir I, Polyak K, Iavarone A, Massagué J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 1995;9:1831–1845.

    CAS  PubMed  Google Scholar 

  68. Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperative with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 2000;19:5178–5193.

    CAS  PubMed  Google Scholar 

  69. Sherr CJ. Principles of tumor suppression. Cell 2004;116:235–246.

    CAS  PubMed  Google Scholar 

  70. Payne SR, Kemp CJ. p27(Kip1) (Cdkn1b)-deficient mice are susceptible to chemical carcinogenesis and may be a useful model for carcinogen screening. Toxicol Pathol 2003;31:355–363.

    PubMed  Google Scholar 

  71. Ekholm SV, Reed SI. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000;12:676–684.

    CAS  PubMed  Google Scholar 

  72. Ahmed MM, Alcock RA, Chendil D, et al. Restoration of transforming growth factor-beta signaling enhances radiosensitivity by altering the Bcl-2/Bax ratio in the p53 mutant pancreatic cancer cell line MIA PaCa-2. J Biol Chem 2002;277:2234–2246.

    CAS  PubMed  Google Scholar 

  73. Michael D, Oren M. The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 2002;12:53–59.

    CAS  PubMed  Google Scholar 

  74. Seoane J. p21(WAF1/CIP1) at the switch between the anti-oncogenic and oncogenic faces of TGFbeta. Cancer Biol Ther 2004;3:226–227.

    CAS  PubMed  Google Scholar 

  75. Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–223.

    CAS  PubMed  Google Scholar 

  76. Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002;2:616–626.

    CAS  PubMed  Google Scholar 

  77. Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001;2:120–129.

    CAS  PubMed  Google Scholar 

  78. Ijichi H, Otsuka M, Tateishi K, et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene 2004;23:1043–1051.

    CAS  PubMed  Google Scholar 

  79. Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor-β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 2005;25:8108–8125.

    CAS  PubMed  Google Scholar 

  80. Pardali K, Kowanetz M, Heldin C-H, Moustakas A. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21 (WAF1/Cip1). J Cell Physiol 2005;204:260–272.

    CAS  PubMed  Google Scholar 

  81. Ammanamanchi S, Tillekeratne MP, Ko TC, Brattain MG. Endogeneous control of cell cycle progression by autocrine transforming growth factor beta in breast cancer cells. Cancer Res 2004;64:2509–2515.

    CAS  PubMed  Google Scholar 

  82. Jen J, Harper JW, Bigner SH, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res 1994; 54:6353–6358.

    CAS  PubMed  Google Scholar 

  83. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 1996;56:722–727.

    CAS  PubMed  Google Scholar 

  84. Denicourt C, Dowdy SF. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 2004;18:851–855.

    CAS  PubMed  Google Scholar 

  85. Russo AA, Jeffrey PD, Patten AK, et al. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996; 382:325–331.

    CAS  PubMed  Google Scholar 

  86. Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factorbeta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 2004; 101:15,231–15,236.

    CAS  PubMed  Google Scholar 

  87. Shen L, Toyota M, Kondo Y, et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic. impact in adult acute lymphocytic leukemia. Blood 2003;101:4131–4136.

    CAS  PubMed  Google Scholar 

  88. Kikuchi T, Toyota M, Itoh F, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene 2002;21:2741–2749.

    CAS  PubMed  Google Scholar 

  89. Li Y, Nagai H, Ohno T, et al. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood 2002;100:2572–2577.

    CAS  PubMed  Google Scholar 

  90. Nishimori S, Tanaka Y, Chiba T, et al. Smad-mediated transcription is required for transforming growth factor-beta1-induced p57(Kip2) proteolysis in osteoblastic cells. J Biol Chem 2001;276:10,700–10,705.

    CAS  PubMed  Google Scholar 

  91. Urano T, Yashiroda H, Muraoka M, et al. p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J Biol Chem 1999;274:12,197–12,200.

    CAS  PubMed  Google Scholar 

  92. Claassen GF, Hann SR. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell-cycle arrest. Proc Natl Acad Sci USA 2000;97:9498–9503.

    CAS  PubMed  Google Scholar 

  93. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFbeta influences Myc, Miz1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001;3:400–408.

    CAS  PubMed  Google Scholar 

  94. Staller P, Peukert K, Kiermaier A, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001;3:392–399.

    CAS  PubMed  Google Scholar 

  95. Warner BJ, Blain SW, Seoane J, Massagué J. Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol 1999;19:5913–5922.

    CAS  PubMed  Google Scholar 

  96. Alexandrow MG, Moses HL. Kips off to Myc: implications for TGF beta signaling. Journal of Cellular Biochemistry 1997;66:427–432.

    CAS  PubMed  Google Scholar 

  97. Sun P, Dong P, Dai K, Hannon GJ, Beach D. p53-independent role of MDM2 in TGF-beta1 resistance. Science 1998;282:2270–2272.

    CAS  PubMed  Google Scholar 

  98. Yagi K, Furuhashi M, Aoki H, et al. c-myc is a downstream target of the Smad pathway. J Biol Chem 2002;277:854–861.

    CAS  PubMed  Google Scholar 

  99. Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21 (Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem 2000;275:29,244–29,256.

    CAS  PubMed  Google Scholar 

  100. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004;24:2546–2559.

    CAS  PubMed  Google Scholar 

  101. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p 107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 2002; 110:19–32.

    CAS  PubMed  Google Scholar 

  102. Feng XH, Liang YY, Liang M, Zhai W, Lin X. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 2002; 9:133–143.

    CAS  PubMed  Google Scholar 

  103. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000;16:653–699.

    CAS  PubMed  Google Scholar 

  104. Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 2001;98:992–999.

    CAS  PubMed  Google Scholar 

  105. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene 1999;18:3004–3016.

    CAS  PubMed  Google Scholar 

  106. Erisman MD, Litwin S, Keidan RD, Comis RL, Astrin SM. Noncorrelation of the expression of the c-myc oncogene in colorectal carcinoma with recurrence of disease or patient survival. Cancer Res 1988; 48:1350–1355.

    CAS  PubMed  Google Scholar 

  107. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 1985;5:1969–1976.

    CAS  PubMed  Google Scholar 

  108. Lutz W, Leon J, Eilers M. Contributions of Myc to tumorigenesis. Biochim Biophys Acta 2002; 1602:61–71.

    CAS  PubMed  Google Scholar 

  109. Henriksson M, Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996;68:109–182.

    CAS  PubMed  Google Scholar 

  110. Smith DR, Myint T, Goh HS. Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br J Cancer 1993; 68:407–413.

    CAS  PubMed  Google Scholar 

  111. Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P. In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 1988;80:665–671.

    CAS  PubMed  Google Scholar 

  112. Stein CA. Antitumor effects of antisense phosphorothioate c-myc oligodeoxynucleotides: a question of mechanism. J Natl Acad Cancer Inst 1996;88:391–393.

    CAS  Google Scholar 

  113. Akie K, Dosaka-Akita H, Murakami A, Kawakami Y. A combination treatment of c-myc antisense DNA with all-trans-retinoic acid inhibits cell proliferation by downregulating c-myc expression in small cell lung cancer. Antisense Nucleic Acid Drug Dev 2000;10:243–249.

    CAS  PubMed  Google Scholar 

  114. Chen JP, Lin C, Xu CP, et al. Molecular therapy with recombinant antisense c-myc adenovirus for human gastric carcinoma cells in vitro and in vivo. J Gastroenterol Hepatol 2001;16:22–28.

    PubMed  Google Scholar 

  115. Siegel PM, Shu W, Massagué J. Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-beta-mediated epithelial cell growth suppression. J Biol Chem 2003;278:35,444–35,450.

    CAS  PubMed  Google Scholar 

  116. Kang Y, Chen CR, Massagué J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003; 11:915–926.

    CAS  PubMed  Google Scholar 

  117. Alexandrow MG, Moses HL. Transforming growth factor beta and cell cycle regulation. Cancer Res 1995;55:1452–1457.

    CAS  PubMed  Google Scholar 

  118. Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 2004;23:4232–4237.

    CAS  PubMed  Google Scholar 

  119. LaBaer J, Garrett MD, Stevenson LF, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997;11:847–862.

    CAS  PubMed  Google Scholar 

  120. Cheng M, Olivier P, Diehl JA, et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999;18:1571–1583.

    CAS  PubMed  Google Scholar 

  121. Koff A, Ohtsuki M, Polyak K, Roberts JM, Massagué J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science 1993;260:536–539.

    CAS  PubMed  Google Scholar 

  122. Polyak K, Kato JY, Solomon MJ, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994;8:9–22.

    CAS  PubMed  Google Scholar 

  123. Slingerland JM, Hengst L, Pan CH, Alexander D, Stampfer MR, Reed SI. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol Cell Biol 1994;14:3683–3694.

    CAS  PubMed  Google Scholar 

  124. Nourse J, Firpo E, Flanagan WM, et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994;372:570–573.

    CAS  PubMed  Google Scholar 

  125. Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 1996;272:877–880.

    CAS  PubMed  Google Scholar 

  126. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 1996;271:499–502.

    CAS  PubMed  Google Scholar 

  127. Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000;14:627–644.

    PubMed  Google Scholar 

  128. Donovan JC, Milic A, Slingerland JM. Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 2001;276:40,888–40,895.

    CAS  PubMed  Google Scholar 

  129. Florenes VA, Bhattacharya N, Bani MR, Ben-David Y, Kerbel RS, Slingerland JM. TGF-beta mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1/WAF1 and p27Kip1. Oncogene 1996;13:2447–2457.

    CAS  PubMed  Google Scholar 

  130. Donovan JC, Rothenstein JM, Slingerland JM. Non-malignant and tumor-derived cells differ in their requirement for p27Kip1 in transforming growth factor-beta-mediated G1 arrest. J Biol Chem 2002;277:41,686–41,692.

    CAS  PubMed  Google Scholar 

  131. Ciarallo S, Subramaniam V, Hung W, et al. Altered p27(Kip1) phosphorylation, localization, and function in human epithelial cells resistant to transforming growth factor beta-mediated G(1) arrest. Mol Cell Biol 2002;22:2993–3002.

    CAS  PubMed  Google Scholar 

  132. Hara T, Kamura T, Kotoshiba S, et al. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol Cell Biol 2005;25:9292–9303.

    CAS  PubMed  Google Scholar 

  133. Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S, Nakayama K. Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 2001;276:48,937–48,943.

    CAS  PubMed  Google Scholar 

  134. Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem 2002;277:14,355–14,358.

    CAS  PubMed  Google Scholar 

  135. Kotoshiba S, Kamura T, Hara T, Ishida N, Nakayama KI. Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 2005;280:17,694–17,700.

    CAS  PubMed  Google Scholar 

  136. Fujita N, Sato S, Katayama K, Tsuruo T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 2002;277:28,706–28,713.

    CAS  PubMed  Google Scholar 

  137. Shin I, Rotty J, Wu FY, Arteaga CL. Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 2005;280:6055–6063.

    CAS  PubMed  Google Scholar 

  138. Shin I, Yakes FM, Rojo F, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002;8:1145–1152.

    CAS  PubMed  Google Scholar 

  139. Kfir S, Ehrlich M, Goldshmid A, Liu X, Kloog Y, Henis YI. Pathway-and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol Cell Biol 2005;25:8239–8250.

    CAS  PubMed  Google Scholar 

  140. Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI. A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci USA 1994;91:5291–5295.

    CAS  PubMed  Google Scholar 

  141. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 1997;11:1464–1478.

    CAS  PubMed  Google Scholar 

  142. Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 1997;16:5334–5344.

    CAS  PubMed  Google Scholar 

  143. Montagnoli A, Fiore F, Eytan E, et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 1999;13:1181–1189.

    CAS  PubMed  Google Scholar 

  144. Malek NP, Sundberg H, McGrew S, et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 2001;413:323–327.

    CAS  PubMed  Google Scholar 

  145. Nguyen H, Gitig DM, Koff A. Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 1999;19:1190–1201.

    CAS  PubMed  Google Scholar 

  146. Zhu XH, Nguyen H, Halicka HD, Traganos F, Koff A. Noncatalytic requirement for cyclin A-cdk2 in p27 turnover. Mol Cell Biol 2004;24:6058–6066.

    CAS  PubMed  Google Scholar 

  147. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.

    CAS  PubMed  Google Scholar 

  148. Shirane M, Harumiya Y, Ishida N, et al. Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 1999;274:13,886–13,893.

    CAS  PubMed  Google Scholar 

  149. Krek W. Proteolysis and the G1-S transition: the SCF connection. Curr Opin Genet Dev 1998;8:36–42.

    CAS  PubMed  Google Scholar 

  150. Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 1998;14:236–243.

    CAS  PubMed  Google Scholar 

  151. Ganoth D, Bornstein G, Ko TK, et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 2001;3:321–324.

    CAS  PubMed  Google Scholar 

  152. Spruck C, Strohmaier H, Watson M, et al. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell 2001;7:639–650.

    CAS  PubMed  Google Scholar 

  153. DeSalle LM, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett 2001;490:179–189.

    CAS  PubMed  Google Scholar 

  154. Sitry D, Seeliger MA, Ko TK, et al. Three different binding sites of Cks1 are required for p27-ubiquitin ligation. J Biol Chem 2002;277:42,233–42,240.

    CAS  PubMed  Google Scholar 

  155. Seeliger MA, Breward SE, Friedler A, Schon O, Itzhaki LS. Cooperative organization in a macro-molecular complex. Nat Struct Biol 2003;10:718–724.

    CAS  PubMed  Google Scholar 

  156. Nakayama K, Nagahama H, Minamishima YA, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 2004;6:661–672.

    CAS  PubMed  Google Scholar 

  157. Zancai P, Dal Col J, Piccinin S, et al. Retinoic acid stabilizes p27(Kip1) in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45(Skp2) and Cks1 proteins. Oncogene 2005;24:2483–2494.

    CAS  PubMed  Google Scholar 

  158. Minamishima YA, Nakayama K. Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res 2002;62:995–999.

    CAS  PubMed  Google Scholar 

  159. Nakayama K, Nagahama H, Minamishima YA, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000;19:2069–2081.

    CAS  PubMed  Google Scholar 

  160. Nakayama KI, Hatakeyama S, Nakayama K. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 2001;282:853–860.

    CAS  PubMed  Google Scholar 

  161. Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL. ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 2001;61:6583–6591.

    CAS  PubMed  Google Scholar 

  162. Lenferink AE, Simpson JF, Shawver LK, Coffey RJ, Forbes JT, Arteaga CL. Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu+MMTV/TGF-alpha bigenic mice. Proc Natl Acad Sci USA 2000;97:9609–9614.

    CAS  PubMed  Google Scholar 

  163. Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol 1997;17:3850–3857.

    CAS  PubMed  Google Scholar 

  164. Hu W, Bellone CJ, Baldassare JJ. RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 1999;274:3396–3401.

    CAS  PubMed  Google Scholar 

  165. Kawada M, Yamagoe S, Murakami Y, Suzuki K, Mizuno S, Uehara Y. Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 1997;15:629–637.

    CAS  PubMed  Google Scholar 

  166. Wang Y, Hengst L, Waddell MB, et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 2007;128:269–280.

    PubMed  Google Scholar 

  167. Bashir T, Pagano M. Don’t skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle 2004;3:850–852.

    CAS  PubMed  Google Scholar 

  168. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(CdH1) ubiquitin ligase. Nature 2004;428:190–193.

    CAS  PubMed  Google Scholar 

  169. Tedesco D, Lukas J, Reed SI. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 2002;16:2946–2957.

    CAS  PubMed  Google Scholar 

  170. Ganiatsas S, Dow R, Thompson A, Schulman B, Germain D. A splice variant of Skp2 is retained in the cytoplasm and fails to direct cyclin D1 ubiquitination in the uterine cancer cell line SK-UT. Oncogene 2001;20:3641–3650.

    CAS  PubMed  Google Scholar 

  171. Dehan E, Pagano M. Skp2, the FoxO1 hunter. Cancer Cell 2005;7:209–210.

    CAS  PubMed  Google Scholar 

  172. Kitajima S, Kudo Y, Ogawa I, et al. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol 2004;165:2147–2155.

    CAS  PubMed  Google Scholar 

  173. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res 2001;61:7044–7047.

    CAS  PubMed  Google Scholar 

  174. Gstaiger M, Jordan R, Lim M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 2001;98:5043–5048.

    CAS  PubMed  Google Scholar 

  175. Hershko D, Bornstein G, Ben-Izhak O, et al. Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 2001;91:1745–1751.

    CAS  PubMed  Google Scholar 

  176. Chiarle R, Fan Y, Piva R, et al. S-phase kinase-associated protein 2 expression in non-Hodgkin’s lymphoma inversely correlates with p27 expression and defines cells in S phase. Am J Pathol 2002;160:1457–1466.

    CAS  PubMed  Google Scholar 

  177. Signoretti S, Di Marcotullio L, Richardson A, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 2002;110:633–641.

    CAS  PubMed  Google Scholar 

  178. Yokoi S, Yasui K, Mori M, Iizasa T, Fujisawa T, Inazawa J. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol 2004;165:175–180.

    CAS  PubMed  Google Scholar 

  179. Yokoi S, Yasui K, Saito-Ohara F, et al. A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers. Am J Pathol 2002;161:207–216.

    CAS  PubMed  Google Scholar 

  180. Masuda TA, Inoue H, Nishida K, et al. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res 2003;9:5693–5698.

    CAS  PubMed  Google Scholar 

  181. Boehm M, Yoshimoto T, Crook MF, et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 2002;21:3390–3401.

    CAS  PubMed  Google Scholar 

  182. Ishida N, Kitagawa M, Hatakeyama S, Nakayama K. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J Biol Chem 2000;275:25,146–25,154.

    CAS  PubMed  Google Scholar 

  183. Rodier G, Montagnoli A, Di Marcotullio L, et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J 2001;20:6672–6682.

    CAS  PubMed  Google Scholar 

  184. McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 2003;23:216–228.

    CAS  PubMed  Google Scholar 

  185. Connor MK, Kotchetkov R, Cariou S, et al. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 2003;14:201–213.

    CAS  PubMed  Google Scholar 

  186. Liu X, Sun Y, Ehrlich M, et al. Disruption of TGF-beta growth inhibition by oncogenic ras is linked to p27Kip1 mislocalization. Oncogene 2000;19:5926–5935.

    CAS  PubMed  Google Scholar 

  187. Borriello A, Cucciolla V, Criscuolo M, et al. Retinoic acid induces p27Kip1 nuclear accumulation by modulating its phosphorylation. Cancer Res 2006;66:4240–4248.

    CAS  PubMed  Google Scholar 

  188. Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002;8:1136–1144.

    CAS  PubMed  Google Scholar 

  189. Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002;8:1153–1160.

    CAS  PubMed  Google Scholar 

  190. Motti ML, Califano D, Troncone G, et al. Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. Am J Pathol 2005;166:737–749.

    CAS  PubMed  Google Scholar 

  191. Singh SP, Lipman J, Goldman H, et al. Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma. Cancer Res 1998;58:1730–1735.

    CAS  PubMed  Google Scholar 

  192. Ciaparrone M, Yamamoto H, Yao Y, et al. Localization and expression of p27KIP1 in multistage colorectal carcinogenesis. Cancer Res 1998;58:114–122.

    CAS  PubMed  Google Scholar 

  193. Masciullo V, Sgambato A, Pacilio C, et al. Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in epithelial ovarian cancer. Cancer Res 1999;59:3790–3794.

    CAS  PubMed  Google Scholar 

  194. Rosen DG, Yang G, Cai KQ, et al. Subcellular localization of p27Kip1 expression predicts poor prognosis in human ovarian cancer. Clin Cancer Res 2005;11:632–637.

    CAS  PubMed  Google Scholar 

  195. Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000;183:10–17.

    CAS  PubMed  Google Scholar 

  196. Viglietto G, Motti ML, Fusco A. Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. Cell Cycle 2002;1:394–400.

    CAS  PubMed  Google Scholar 

  197. Sekimoto T, Fukumoto M, Yoneda Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J 2004;23:1934–1942.

    CAS  PubMed  Google Scholar 

  198. Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 1997;387:422–426.

    CAS  PubMed  Google Scholar 

  199. West MJ, Stoneley M, Willis AE. Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene 1998;17:769–780.

    CAS  PubMed  Google Scholar 

  200. Tomoda K, Kubota Y, Kato J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 1999;398:160–165.

    CAS  PubMed  Google Scholar 

  201. Tomoda K, Kubota Y, Arata Y, et al. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 2002;277: 2302–2310.

    CAS  PubMed  Google Scholar 

  202. Jeon JH, Lee KN, Hwang CY, et al. Tumor suppressor VDUP1 increases p27(Kip1) stability by inhibiting. JAB1 Cancer Res 2005;65:4485–4489.

    CAS  Google Scholar 

  203. Esteva FJ, Sahin AA, Rassidakis GZ, et al. Jun activation domain binding protein 1 expression is associated with low p27(Kip1)levels in node-negative breast cancer. Clin Cancer Res 2003;9: 5652–5659.

    CAS  PubMed  Google Scholar 

  204. Muller D, Thieke K, Burgin A, Dickmanns A, Eilers M. Cyclin E-mediated elimination of p27 requires its interaction with the nuclear pore-associated protein mNPAP60. EMBO J 2000;19:2168–2180.

    CAS  PubMed  Google Scholar 

  205. Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 1998;17:6144–6154.

    CAS  PubMed  Google Scholar 

  206. Creasman WT. Endometrial cancer: incidence, prognostic factors, diagnosis, and treatment. Semin Oncol 1997;24:S1–140–S1–150.

    CAS  PubMed  Google Scholar 

  207. Bandera CA, Boyd J. The molecular genetics of endometrial cancer. In: Etiology of Breast and Gynecological Cancers, Wiley-Liss, Inc., New York, NY 1997.

    Google Scholar 

  208. Gold LI, Parekh TV. Loss of growth regulation by transforming growth factor-beta (TGF-beta) in human cancers: studies on endometrial carcinoma. Semin Reprod Endocrinol 1999;17:73–92.

    CAS  PubMed  Google Scholar 

  209. Cohen CJ. Tamoxifen and endometrial cancer: tamoxifen effects on the human female genital tract. Semin Oncol 1997;24:S1–55–S1–64.

    CAS  PubMed  Google Scholar 

  210. Cohen I, Rosen DJ, Shapira J, et al. Endometrial changes with tamoxifen: comparison between tamoxifen0 treated and nontreated asymptomatic, postmenopausal breast cancer patients [see comments]. Gynecol Oncol 1994;52:185–190.

    CAS  PubMed  Google Scholar 

  211. Cheng WF, Lin HH, Torng PL, Huang SC. Comparison of endometrial changes among symptomatic tamoxifen-treated and nontreated premenopausal and postmenopausal breast cancer patients. Gynecol Oncol 1997;66:233–237.

    CAS  PubMed  Google Scholar 

  212. Gurpide E. Endometrial cancer: biochemical and clinical correlates. J Natl Cancer Inst 1991;83:405–416.

    CAS  PubMed  Google Scholar 

  213. Morrow CP, Curtin JP, Townsend DE. Tumors of the endometirum. Fourth edit. Synopsis of Gynecologic Oncology, Churchill Livingstone, New York 1993.

    Google Scholar 

  214. Kistner RW, Griffiths CT, Craig JM. Use of progestational agents in the management of endometrial cancer. Cancer 1965;18:1563–1579.

    CAS  PubMed  Google Scholar 

  215. Bandera CA, Boyd J. The molecular genetics of endometrial carcinoma. Prog Clin Biol Res 1997; 396:185–203.

    CAS  PubMed  Google Scholar 

  216. Sulak PJ. Endometrial cancer and hormone replacement therapy. Appropriate use of progestins to oppose endogenous and exogenous estrogen. Endocrinol Metabol Clin N Am 1997;26:399–412.

    CAS  Google Scholar 

  217. Parekh TV, Gama P, Wen X, et al. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res 2002;62: 2778–2790.

    CAS  PubMed  Google Scholar 

  218. Farley J, Gray K, Nycum L, Prentice M, Birrer MJ, Jakowlew SB. Endocervical cancer is associated with an increase in the ligands and receptors for transforming growth factor-beta and a contrasting decrease in p27(Kip1). Gynecol Oncol 2000;78:113–122.

    CAS  PubMed  Google Scholar 

  219. Macri E, Loda M. Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev 1998;17:337–344.

    CAS  PubMed  Google Scholar 

  220. Tsuchiya A, Zhang GJ, Kanno M. Prognostic impact of cyclin-dependent kinase inhibitor p27kip1 in node-positive breast cancer. J Surg Oncol 1999;70:230–234.

    CAS  PubMed  Google Scholar 

  221. Wu J, Shen ZZ, Lu JS, et al. Prognostic role of p27Kip1 and apoptosis in human breast cancer. Br J Cancer 1999;79:1572–1578.

    CAS  PubMed  Google Scholar 

  222. Catzavelos C, Tsao MS, DeBoer G, Bhattacharya N, Shepherd FA, Slingerland JM. Reduced expression of the cell cycle inhibitor p27Kip1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res 1999;59,684–688.

    CAS  PubMed  Google Scholar 

  223. Nycum LR, Smith LM, Farley JH, Kost ER, Method MW, Birrer MJ. The role of p27 in endometrial carcinoma. Gynecol Oncol 2001;81:242–246.

    CAS  PubMed  Google Scholar 

  224. Oshita T, Shigemasa K, Nagai N, Ohama K. p27, cyclin E, and CDK2 expression in normal and cancerous endometrium. Int J Oncol 2002;21:737–743.

    CAS  PubMed  Google Scholar 

  225. Ozkara SK, Corakci A. Significantly decreased P27 expression in endometrial carcinoma compared to complex hyperplasia with atypia (correlation with p53 expression). Pathol Oncol Res 2004;10:89–97.

    PubMed  Google Scholar 

  226. Masciullo V, Susini T, Zamparelli A, et al. Frequent loss of expression of the cyclin-dependent kinase inhibitor p27(Kip1) in estrogen-related Endometrial adenocarcinomas. Clin Cancer Res 2003;9:5332–5338.

    CAS  PubMed  Google Scholar 

  227. Piva R, Cancelli I, Cavalla P, et al. Proteasome-dependent degradation of p27/kip1 in gliomas. J Neuropathol Exp Neurol 1999;58:691–696.

    CAS  PubMed  Google Scholar 

  228. Cariou S, Catzavelos C, Slingerland JM. Prognostic implications of expression of the cell cycle inhibitor protein p27Kip1. Breast Cancer Res Treat 1998;52:29–41.

    CAS  PubMed  Google Scholar 

  229. Lee MH, Yang HY. Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 2003;22:435–449.

    CAS  PubMed  Google Scholar 

  230. Pietenpol JA, Bohlander SK, Sato Y, et al. Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res 1995;55:1206–1210.

    CAS  PubMed  Google Scholar 

  231. Kawamata N, Morosetti R, Miller CW, et al. Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 1995;55:2266–2269.

    CAS  PubMed  Google Scholar 

  232. Ponce-Castaneda MV, Lee MH, Latres E, et al. p27Kip1: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res 1995;55:1211–1214.

    CAS  PubMed  Google Scholar 

  233. Spirin KS, Simpson JF, Takeuchi S, Kawamata N, Miller CW, Koeffler HP. p27/Kip1 mutation found in breast cancer. Cancer Res 1996;56:2400–2404.

    CAS  PubMed  Google Scholar 

  234. Kobayashi H, Montgomery KT, Bohlander SK, et al. Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases. Blood 1994;84:3473–3482.

    CAS  PubMed  Google Scholar 

  235. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 1998;396:177–180.

    CAS  PubMed  Google Scholar 

  236. Muraoka RS, Lenferink AE, Law B, et al. ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. Mol Cell Biol 2002;22:2204–2219.

    CAS  PubMed  Google Scholar 

  237. Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996;85:733–744.

    CAS  PubMed  Google Scholar 

  238. Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707–720.

    CAS  PubMed  Google Scholar 

  239. Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 1996;271:1861–1864.

    CAS  PubMed  Google Scholar 

  240. Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A. Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 1997;272:7093–7098.

    CAS  PubMed  Google Scholar 

  241. Pagano M, Tam SW, Theodoras AM, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269:682–685.

    CAS  PubMed  Google Scholar 

  242. Lloyd RV, Erickson LA, Jin L, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999;154:313–323.

    CAS  PubMed  Google Scholar 

  243. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res, 1999;59:2615–2622.

    CAS  PubMed  Google Scholar 

  244. Kane RC, Farrell AT, Sridhara R, Pazdur R. United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 2006;12:2955–2960.

    CAS  PubMed  Google Scholar 

  245. O’Connor OA, Smith EA, Toner LE, et al. The combination of the proteasome inhibitor bortezomib and the bcl-2 antisense molecule oblimersen sensitizes human B-cell lymphomas to cyclophosphamide. Clin Cancer Res 2006;12:2902–2911.

    PubMed  Google Scholar 

  246. Kaufman JL, Lonial S. Proteasome inhibition: novel therapy for multiple myeloma. Onkologie 2006; 29:162–168.

    CAS  PubMed  Google Scholar 

  247. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998;17: 7151–7160.

    CAS  PubMed  Google Scholar 

  248. Zhang F, Monkkonen M, Roth S, Laiho M. TGF-beta induced G(1) cell cycle arrest requires the activity of the proteasome pathway. Exp Cell Res 2002;281:190–196.

    CAS  PubMed  Google Scholar 

  249. Sgambato A, Zhang YJ, Ciaparrone M, et al. Overexpression of p27Kip1 inhibits the growth of both normal and transformed human mammary epithelial cells. Cancer Res 1998;58:3448–3454.

    CAS  PubMed  Google Scholar 

  250. Wang W, Ungermannova D, Jin J, Harper JW, Liu X. Negative regulation of SCFSkp2 ubiquitin ligase by TGF-beta signaling. Oncogene 2004;23:1064–1075.

    CAS  PubMed  Google Scholar 

  251. Dow R, Hendley J, Pirkmaier A, Musgrove EA, Germain D. Retinoic acid-mediated growth arrest requires ubiquitylation and degradation of the F-box protein Skp2. J Biol Chem 2001;276:45,945–45,951.

    CAS  PubMed  Google Scholar 

  252. Lin R, Wang TT, Miller WH, Jr, White JH. Inhibition of F-Box protein p45(SKP2) expresion and stabilization of cyclin-dependent kinase inhibitor p27(KIP1) in vitamin D analog-treated cancer cells. Endocrinology 2003;144:749–753.

    CAS  PubMed  Google Scholar 

  253. Tadlock L, Yamagiwa Y, Hawke J, Marienfeld C, Patel T. Transforming growth factor-beta inhibition of proteasomal activity: a potential mechanism of growth arrest. Am J Physiol Cell Physiol 2003; 285:C277–C285.

    CAS  PubMed  Google Scholar 

  254. Radke S, Pirkmaier A, Germain D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 2005;24:3448–3458.

    CAS  PubMed  Google Scholar 

  255. Drobnjak M, Melamed J, Taneja S, et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin Cancer Res 2003;9:2613–2619.

    CAS  PubMed  Google Scholar 

  256. Sarmento LM, Huang H, Limon A, et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 2005;202:157–168.

    CAS  PubMed  Google Scholar 

  257. Migliaccio A, Di Domenico M, Castoria G, et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996;15:1292–1300.

    CAS  PubMed  Google Scholar 

  258. Collins P, Webb C. Estrogen hits the surface. Nat Med 1999;5:1130–1131.

    CAS  PubMed  Google Scholar 

  259. Foster JS, Fernando RI, Ishida N, Nakayama KI, Wimalasena J. Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 2003;278:41,355–41,366.

    CAS  PubMed  Google Scholar 

  260. Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998;95:1091–1096.

    CAS  PubMed  Google Scholar 

  261. Foster JS, Henley DC, Ahamed S, Wimalasena J. Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 2001;12:320–327.

    CAS  PubMed  Google Scholar 

  262. Foster JS, Wimalasena J. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol Endocrinol 1996;10:488–498.

    CAS  PubMed  Google Scholar 

  263. Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol Cell Biol 2001;21:794–810.

    CAS  PubMed  Google Scholar 

  264. Lamb J, Ladha MH, McMahon C, Sutherland RL, Ewen ME. Regulation of the functional interaction between cyclin D1 and the estrogen receptor. Mol Cell Biol 2000;20:8667–8675.

    CAS  PubMed  Google Scholar 

  265. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM. Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA 2000;97:9042–9046.

    CAS  PubMed  Google Scholar 

  266. Sutherland RL, Prall OW, Watts CK, Musgrove EA. Estrogen and progestin regulation of cell cycle progression. J Mammary Gland Biol Neoplasia 1998;3:63–72.

    CAS  PubMed  Google Scholar 

  267. Gizard F, Robillard R, Gervois P, et al. Progesterone inhibits human breast cancer cell growth through transcriptional upregulation of the cyclin-dependent kinase inhibitor p27Kip1 gene. FEBS Lett 2005; 579:5535–5541.

    CAS  PubMed  Google Scholar 

  268. Shiozawa T, Horiuchi A, Kato K, et al. Up-regulation of p27Kip1 by progestins is involved in the growth suppression of the normal and malignant human endometrial glandular cells. Endocrinology 2001;142:4182–4188.

    CAS  PubMed  Google Scholar 

  269. Musgrove EA, Hunter LJ, Lee CS, Swarbrick A, Hui R, Sutherland RL. Cyclin D1 overexpression induces progestin resistance in T-47D breast cancer cells despite p27(Kip1) association with cyclin E-Cdk2. J Biol Chem 2001;276:47,675–47,683.

    CAS  PubMed  Google Scholar 

  270. Cunha GR, Cooke PS, Kurita T. Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol 2004;67:417–434.

    CAS  PubMed  Google Scholar 

  271. Cooke PS, Buchanan DL, Young P, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA 1997;94:6535–6540.

    CAS  PubMed  Google Scholar 

  272. Hayward SW, Cunha GR, Dahiya R. Normal development and carcinogenesis of the prostate—A unifying hypothesis. In Basis For Cancer Management, 1996;Vol. 784:pp. 50–62.

    CAS  Google Scholar 

  273. Hom YK, Young P, Wiesen JF, et al. Uterine and vaginal organ growth requires epidermal growth factor receptor signaling from stroma. Endocrinology 1998;139:913–921.

    CAS  PubMed  Google Scholar 

  274. Kurita T, Young P, Brody JR, Lydon JP, O’Malley BW, Cunha GR. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology 1998;139:4708–4713.

    CAS  PubMed  Google Scholar 

  275. Lecanda J, Parekh TV, et al. TGF-β and ovarian hormones control endometrial growth by mechanisms that converge on the cyclin-dependent kinase inhibitor, p27Kip1. Proc Am Assoc Cancer Res 2006;47: 1322 Abstract#5627.

    Google Scholar 

  276. Bachman KE, Blair BG, Brenner K, et al. p21(WAF1/CIP1) mediates the growth response to TGF-beta in human epithelial cells. Cancer Biol Ther 2004;3:221–225.

    CAS  PubMed  Google Scholar 

  277. Deckers M, van Dinther M, Buijs J, et al. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 2006;66:2202–2209.

    CAS  PubMed  Google Scholar 

  278. Tian F, DaCosta Byfield S, Parks WT, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003;63:8284–8292.

    CAS  PubMed  Google Scholar 

  279. Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998;4:1449–1452.

    CAS  PubMed  Google Scholar 

  280. Besson A, Assoian RK, Roberts JM. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 2004;4:948–955.

    CAS  PubMed  Google Scholar 

  281. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004;18:862–876.

    CAS  PubMed  Google Scholar 

  282. Hlobilkova A, Knillova J, Bartek J, Lukas J, Kolar Z. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147:19–25.

    CAS  PubMed  Google Scholar 

  283. Watanabe J, Sato H, Kanai T, et al. Paradoxical expression of cell cycle inhibitor p27 in endometrioid adenocarcinoma of the uterine corpus—correlation with proliferation and clinicopathological parameters. Br J Cancer 2002;87:81–85.

    CAS  PubMed  Google Scholar 

  284. Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGF-beta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002;115:3193–3206.

    CAS  PubMed  Google Scholar 

  285. Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 2004;15:4682–4694.

    CAS  PubMed  Google Scholar 

  286. Souchelnytskyi S. Proteomics of TGF-beta signaling and its impact on breast cancer. Expert Rev Proteomics 2005;2:925–935.

    CAS  PubMed  Google Scholar 

  287. Laping NJ. Therapeutic uses of smad protein inhibitors: Selective inhibition of specific TGF-beta activities. IDrugs 1999;2:907–914.

    CAS  PubMed  Google Scholar 

  288. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 2005;44:2293–2304.

    CAS  PubMed  Google Scholar 

  289. Singh J, Ling LE, Sawyer JS, Lee WC, Zhang F, Yingling JM. Transforming the TGFbeta pathway: convergence of distinct lead generation strategies on a novel kinase pharmacophore for TbetaRI (ALK5). Curr Opin Drug Discov Dev 2004;7:437–445.

    CAS  Google Scholar 

  290. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011–1022.

    CAS  PubMed  Google Scholar 

  291. Pinkas J, Teicher BA. TGF-beta in cancer and as a therapeutic target. Biochem Pharmacol 2006;72: 523–529.

    CAS  PubMed  Google Scholar 

  292. Lecanda J, Parekh TV, et al. Transforming growth factor-β, estrogen, and progesterone coverage on the regulation of p27Kip1 in the normal and malignant endometrium. Cancer Res 2007;67:1007–1018.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Gold, L.I., Lecanda, J. (2008). Mechanisms of Cell Cycle Regulation by TGF-β Disabled in Cancer. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics