Skip to main content
  • 7604 Accesses

Abstract

In addition to the economic benefits honey bees provide through pollination and honey production, this species is an important model system that provides insight into many areas of biomedical science. With a long history as a subject of studies of social behavior, learning and memory, and immunology (due to the allergens in their venom), the honey bee is emerging as a major model for phenotypic plasticity, development and aging, circadian rhythms, muscle metabolism and behavioral genomics. Sequencing of the honey bee genome revealed that honey bees share many genes and biochemical pathways with humans, thus opening new avenues of research. Biomedical research with honey bees benefits from this species’ well known physiology, the tractability of its natural behaviors both in and out of the laboratory, a fully sequenced genome with accompanying suite of cellular and molecular tools, and a large interactive community of basic and applied researchers. Only Drosophila rivals the honey bee as an insect model system for biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics. Nat Rev Genet 2003;4:651–657.

    Article  PubMed  CAS  Google Scholar 

  2. Whitfield CW, Band MR, Bonaldo MF, et al. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 2002;12:555–566.

    Article  PubMed  Google Scholar 

  3. Queller DC, Strassmann JE. The many selves of social insects. Science 2002;296:311–313.

    Article  PubMed  CAS  Google Scholar 

  4. Winston ML. The Biology of the Honey Bee. Cambridge, MA: Harvard University Press, 1987:281.

    Google Scholar 

  5. Morse RA, Calderone NW. The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult 2000;128:1–15.

    Google Scholar 

  6. Withers GS, Fahrbach SE, Robinson GE. Effects of experience and juvenile-hormone on the organization of the mushroom bodies of honey-bees. J Neurobiol 1995;26:130–144.

    Article  PubMed  CAS  Google Scholar 

  7. Hoover SER, Higo HA, Winston ML. Worker honey bee ovary development: Seasonal variation and the influence of larval and adult nutrition. J Comp Physiol B Biochem System Environ Physiol 2006;176:55–63.

    Article  Google Scholar 

  8. Williams DL. A veterinary approach to the European honey bee (Apis mellifera). Vet J 2000;160:61–73.

    Article  PubMed  CAS  Google Scholar 

  9. Degrandi-Hoffman G, Curry R. The population dynamics of Varroa mites in honey bee colonies: Part III—How beekeeping practices could affect Varroa populations. Am Bee J 2005;145:709–710.

    Google Scholar 

  10. Delaplane KS, Berry JA, Skinner JA, Parkman JP, Hood WM. Integrated pest management against Varroa destructor reduces colony mite levels and delays treatment threshold. J Apicult Res 2005;44:157–162.

    Google Scholar 

  11. Koeniger N, Koeniger G, Gries M, Tingek S. Drone competition at drone congregation areas in four Apis species. Apidologie 2005;36:211–221.

    Article  Google Scholar 

  12. Koeniger N, Koeniger G, Pechhacker H. The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insect Soc 2005;52:31–35.

    Article  Google Scholar 

  13. Loper GM, Wolf WW, Taylor OR Jr. Honey bee drone flyways and congregation areas: Radar observations. J Kans Entomol Soc 1992;65:223–230.

    Google Scholar 

  14. Rinderer TE, De Guzman LI, Danka RG. A new phase begins for the USDA-ARS russian honey bee breeding program. Am Bee J 2005;145(7):579–582.

    Google Scholar 

  15. Harris JW, Harbo JR. The SMR trait explained by hygienic behavior of adult bees. Am Bee J 2005;145(5):430–431.

    Google Scholar 

  16. Ibrahim A, Spivak M. The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor. Apidologie 2006;37:31–40.

    Article  Google Scholar 

  17. Spivak M, Reuter GS. Honey bee hygienic behavior. Am Bee J 1998;138:283–286.

    Google Scholar 

  18. Giray T, Robinson GE. Effects of intracolony variability in behavioral-development on plasticity of division-of-labor in honey-bee colonies. Behav Ecol Sociobiol 1994;35:13–20.

    Google Scholar 

  19. Huang ZY, Robinson GE. Honeybee clony itegration—worker worker interactions mediate hormonally regulated plasticity in division-of-labor. Proc Natl Acad Sci USA 1992;89:11726–11729.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson GE, Page RE, Strambi C, Strambi A. Hormonal and genetic-control of behavioral integration in honey bee colonies. Science 1989;246:109–111.

    Article  PubMed  CAS  Google Scholar 

  21. Huang ZY, Robinson GE. Regulation of honey bee division of labor by colony age demography. Behav Ecol Sociobiol 1996;39:147–158.

    Article  Google Scholar 

  22. Schulz DJ, Huang ZY, Robinson GE. Effects of colony food shortage on behavioral development in honey bees. Behav Ecol Sociobiol 1998;42:295–303.

    Article  Google Scholar 

  23. Robinson GE, Page RE, Strambi C, Strambi A. Colony integration in honey-bees—mechanisms of behavioral reversion. Ethology 1992;90:336–348.

    Article  CAS  Google Scholar 

  24. von Frisch K. The Dance Language and Orientation of Bees. Cambridge, MA: Belknap Press of Harvard University Press, 1967:566.

    Google Scholar 

  25. Huang ZY, Robinson GE, Borst DW. Physiological correlates of division-of-labor among similarly aged honey-bees. J Comp Physiol A Sensory Neural Behav Physiol 1994;174:731–739.

    CAS  Google Scholar 

  26. Pankiw T, Tarpy DR, Page RE. Genotype and rearing environment affect honeybee perception and foraging behaviour. Anim Behav 2002;64:663–672.

    Article  Google Scholar 

  27. Page RE, Robinson GE, Britton DS, Fondrk MK. Genotypic variability for rates of behavioral-development in worker honeybees (Apis mellifera L). Behav Ecol 1992;3:173–180.

    Article  Google Scholar 

  28. Page RE, Fondrk MK, Hunt GJ, et al. Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J Hered 2000;91: 474–479.

    Article  PubMed  Google Scholar 

  29. Todd FE, Bishop RK. Trapping honeybee-gathered pollen and factors affecting yields. J Econ Entomol 1940;33:866–870.

    Google Scholar 

  30. Gary NE, Lorenzen K. Improved trap to recover dead and abnormal honey bees Apis mellifera Hymenoptera: Apidae from hives. Environ Entomol 1984;13:718–723.

    Google Scholar 

  31. Capaldi EA, Robinson GE, Fahrbach SE. Neuroethology of spatial learning: The birds and the bees. Annu Rev Psychol 1999;50: 651–682.

    Article  PubMed  CAS  Google Scholar 

  32. Slessor KN, Kaminski LA, Winston ML. The essence of royaltyqueen honey bee pheromones. Abstracts of papers of the American Chemical Society 1988;195:55–AGRO.

    Google Scholar 

  33. Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE. cGMP-dependent changes in phototaxis: A possible role for the foraging gene in honey bee division of labor. J Exp Biol 2003;206:2507–2515.

    Article  PubMed  CAS  Google Scholar 

  34. Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE. Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 2003;100:14519–14525.

    Article  PubMed  CAS  Google Scholar 

  35. Wright GA, Smith BH. Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera). Chem Sens 2004;29:127–135.

    Article  Google Scholar 

  36. Dujardin F. Memoire sur le syteme nerveux of insectes. Ann Sci Nat Zool Biol Anim 1850;14:195–206.

    Google Scholar 

  37. Kenyon FC. The brain of the bee: A preliminary contribution to the morphology of the nervous system of the Arthropoda. J Comp Neurol 1896;VI: 134–205.

    Google Scholar 

  38. Brandt R, Rohlfing T, Rybak J, et al. Three-dimensional averageshape atlas of the honeybee brain and its applications. J Comp Neurol 2005;492:1–19.

    Article  PubMed  Google Scholar 

  39. Fahrbach SE, Farris SM, Sullivan JP, Robinson GE. Limits on volume changes in the mushroom bodies of the honey bee brain. J Neurobiol 2003;57:141–151.

    Article  PubMed  Google Scholar 

  40. Farris SM, Robinson GE, Fahrbach SE. Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 2001;21:6395–6404.

    PubMed  CAS  Google Scholar 

  41. Ismail N, Robinson GE, Fahrbach SE. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc Natl Acad Sci USA 2006;103:207–211.

    Article  PubMed  CAS  Google Scholar 

  42. Wang S, Zhang S, Sato K, Srinivasan MV. Maturation of odor representation in the honeybee antennal lobe. J Insect Physiol 2005;51:1244–1254.

    Article  PubMed  CAS  Google Scholar 

  43. Kloppenburg P, Kirchhof BS, Mercer AR. Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J Neurophysiol 1999;81:39–48.

    PubMed  CAS  Google Scholar 

  44. Wüstenberg DG, Boytcheva M, Grunewald B, Byrne JH, Menzel R, Baxter DA. Current-and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J Neurophysiol 2004;92:2589–2603.

    Article  PubMed  Google Scholar 

  45. Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR. Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem Mol Biol 2005;35: 873–882.

    Article  PubMed  CAS  Google Scholar 

  46. Blenau W, Baumann A. Molecular and pharmacological properties of insect biogenic amine receptors: Lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 2001;48:13–38.

    Article  PubMed  CAS  Google Scholar 

  47. Mustard JA, Kurshan PT, Hamilton IS, Blenau W, Mercer AR. Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. J Comp Neurol 2005;483:66–75.

    Article  PubMed  CAS  Google Scholar 

  48. Paul RK, Takeuchi H, Matsuo Y, Kubo T. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. Insect Mol Biol 2005;14:9–15.

    Article  PubMed  CAS  Google Scholar 

  49. Perk CG, Mercer AR. Dopamine modulation of honey bee (Apis mellifera) antennal-lobe neurons. J Neurophysiol 2006;95:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  50. Sinakevitch I, Niwa M, Strausfeld NJ. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J Comp Neurol 2005;488:233–254.

    Article  PubMed  CAS  Google Scholar 

  51. Smirnov VB, Chesnokova EG, Lopatina NG, Voike E. Characteristics of neuron activity in the honey bee (Apis Mellifera L.) in conditions of kynurenine deficiency. Neurosci Behav Physiol 2006;V36:213–216.

    Article  PubMed  CAS  Google Scholar 

  52. Velarde RA, Sauer CD, Walden KKO, Fahrbach SE, Robertson HM. Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 2005;35:1367–1377.

    Article  PubMed  CAS  Google Scholar 

  53. Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G. Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett 2006;398:274–279.

    Article  PubMed  CAS  Google Scholar 

  54. Echalier G, Ohanessian A. In vitro culture of Drosophila melanogaster embryonic cells. In vitro J Tissue Cult Assoc 1970;6:162.

    CAS  Google Scholar 

  55. Eide PE. Establishment of a cell line from long-term primary embryonic house fly cell cultures. J Insect Physiol 1975;21:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  56. Masakazu T, Mitsuhashi J, Ohtaki T. Establishment of a cell line from embryonic tissues of the fleshfly, Sarcophaga peregrina. Dev Growth Differ 1980;22:11–19.

    Article  Google Scholar 

  57. Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 1972;27:353.

    PubMed  CAS  Google Scholar 

  58. Giurfa M. Cognitive neuroethology: Dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 2003;13:726–735.

    Article  PubMed  CAS  Google Scholar 

  59. Laurent S, Masson C, Jacob I. Whole-cell recording from honeybee olfactory receptor neurons: Ionic currents, membrane excitability and odorant response in developing worker bee and drone. Eur J Neurosci 1994;15:1139–1152.

    Article  Google Scholar 

  60. Kreissl S, Bicker G. Dissociated neurons of the pupal honeybee brain in cell culture. J Neurocytol 1992;21:545–556.

    Article  PubMed  CAS  Google Scholar 

  61. Wüstenberg DG, Grünewald B. Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A: Neuroethol Sens Neural, Behav Physiol 2004;190:807–821.

    Article  CAS  Google Scholar 

  62. Beisser K, Munz E, Reimann R, Renner-Müller ICE. Experimentelle Untersuchungen zur in vitro-Kultivierung von Zellen der Kärntner Honigbiene (Apis mellifera carnica Pollmann, 1879). Zentralbl Veterinärmed B 1990;37:509–519.

    PubMed  CAS  Google Scholar 

  63. Gascuel J, Masson C, Bermudez I, Beadle DJ. Morphological analysis of honeybee antennal cells growing in primary cultures. Tissue Cell 1994;26:551–558.

    Article  PubMed  CAS  Google Scholar 

  64. Mitsuhashi J. Development of highly nutritive culture media. In Vitro Cell Dev Biol 2001;37:330–337.

    CAS  Google Scholar 

  65. Bergem M, Norberg K, Roseth A, Meuwissen T, Lien S, Asmodt RM. Chimeric honeybees (Apis mellifera) produced by transplantation of embryonic cells into pre-gastrula stage embryos and detection of chimerism by use of microsatellite markers. Mol Reprod Dev 2006;73:475–481.

    Article  PubMed  CAS  Google Scholar 

  66. Robinson KO, Ferguson HJ, Cobey S, Vaessin H, Smith BH. Spermmediated transformation of the honey bee, Apis mellifera. Insect Mol Biol 2000;9:625–634.

    Article  PubMed  CAS  Google Scholar 

  67. Beshers SN, Fewell JH. Models of division of labor in social insects. Annu Rev Entomol 2001;46:413–440.

    Article  PubMed  CAS  Google Scholar 

  68. Omholt SW, Rishovd S, Hagen A, Elmholdt O, Dalsgard B, Fromm S. Successful production of chimeric honeybee larvae. J Exp Zool 1995;272:410–412.

    Article  Google Scholar 

  69. Aase ALTO, Amdam GV, Hagen A, Omholt SW. A new method for rearing genetically manipulated honey bee workers. Apidologie 2005;36:293–299.

    Article  Google Scholar 

  70. Aupinel P, Fortini D, Dufour H, et al. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. J Insectol 2005;58:107–111.

    Google Scholar 

  71. Czoppelt C, Rembold. H. Effect of parathion on honey bee larvae reared in vitro. Anz Schadlingske 1988;61:95–100.

    Google Scholar 

  72. Desneux N, Decourtye A, Delpuech J-M. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 2007;52:81–106.

    Article  PubMed  CAS  Google Scholar 

  73. Peng YSC, Mussen E, Fong A, Montague MA, Tyler T. Effects of chlortetracycline of honey-bee worker larvae reared in vitro. J Invertebr Pathol 1992;60:127–133.

    Article  CAS  Google Scholar 

  74. Rembold H, Lackner B. Rearing of honeybee larvae in vitro: Effect of yeast extract on queen differentiation. J Apicult Res 1981;20: 165–171.

    Google Scholar 

  75. Weaver N. Rearing of honeybee larvae on royal jelly in the laboratory. Science 1955;121:509–510.

    Article  PubMed  CAS  Google Scholar 

  76. Weaver N. Control of dimorphism in the female honeybee. 2: Methods of rearing larvae in the laboratory and of preserving royal jelly. J Apicult Res 1974;13:3–14.

    Google Scholar 

  77. Farooqui T, Robinson K, Vaessin H, Smith BH. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 2003;23:5370–5380.

    PubMed  CAS  Google Scholar 

  78. Farooqui T, Vaessin H, Smith BH. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 2004;50:701–713.

    Article  PubMed  CAS  Google Scholar 

  79. Amdam GV, Simoes ZLP, Guidugli KR, Norberg K, Omholt SW. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 2003;3:1–8.

    Article  PubMed  Google Scholar 

  80. Beye M, Hartel S, Hagen A, Hasselmann M, Omholt SW. Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 2002; 11:527–532.

    Article  PubMed  CAS  Google Scholar 

  81. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 2003;114:419–429.

    Article  PubMed  CAS  Google Scholar 

  82. Wilson EO, Holldobler B. Eusociality: Origin and consequences. Proc Natl Acad Sci USA 2005;102:13367–13371.

    Article  PubMed  CAS  Google Scholar 

  83. Seeley TD. Honeybee Ecology. Princeton, NJ: Princeton University Press, 1985.

    Google Scholar 

  84. Fewell JH. Social insect networks. Science 2003;301:1867–1870.

    Article  PubMed  CAS  Google Scholar 

  85. Jeanson R, Kukuk PF, Fewell JH. Emergence of division of labour in halictine bees: Contributions of social interactions and behavioural variance. Anim Behav 2005;70:1183–1193.

    Article  Google Scholar 

  86. Page RE, Erber J. Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 2002;89:91–106.

    Article  PubMed  CAS  Google Scholar 

  87. Robinson GE. Genomics and integrative analyses of division of labor in honeybee colonies. Am Nat 2002;160:S160–S172.

    Article  PubMed  Google Scholar 

  88. Robinson GE, Fahrbach SE, Winston ML. Insect societies and the molecular biology of social behavior. BioEssays 1997;19:1099–1108.

    Article  PubMed  CAS  Google Scholar 

  89. Robinson GE, Grozinger CM, Whitfield CW. Sociogenomics: Social life in molecular terms. Nat Rev Genet 2005;6:257–270.

    Article  PubMed  CAS  Google Scholar 

  90. Visscher PK. Colony integration and reproductive conflict in honey bees. Apidologie 1998;29:23–45.

    Article  Google Scholar 

  91. Visscher PK. Group decision making in nest site selection among social insects. Annu Rev Entomol 2006;52:255–285.

    Article  CAS  Google Scholar 

  92. Leoncini I, Crauser D, Robinson GE, Le Conte Y. Worker-worker inhibition of honey bee behavioural development independent of queen and brood. Insect Soc 2004;51:392–394.

    Article  Google Scholar 

  93. Leoncini I, Le Conte Y, Costagliola G, et al. Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Natl Acad Sci USA 2004;101:17559–17564.

    Article  PubMed  CAS  Google Scholar 

  94. Pankiw T, Roman R, Sagili RR, Zhu-Salzman K. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera). Naturwissenschaften 2004;91:575–578.

    Article  PubMed  CAS  Google Scholar 

  95. Sullivan JP, Jassim O, Fahrbach SE, Robinson GE. Juvenile hormone paces behavioral development in the adult worker honey bee. Horm Behav 2000;37:1–14.

    Article  PubMed  CAS  Google Scholar 

  96. Giray T, Huang ZY, Guzman-Novoa E, Robinson GE. Physiological correlates of genetic variation for rate of behavioral development in the honeybee, Apis mellifera. Behav Ecol Sociobiol 1999;47:17–28.

    Article  Google Scholar 

  97. Huang ZY, Robinson GE. Seasonal-changes in juvenile-hormone titers and rates of biosynthesis in honey-bees. J Comp Physiol B Biochem Syst Environ Physiol 1995;165:18–28.

    Article  CAS  Google Scholar 

  98. Janmaat AF, Winston ML. Removal of Varroa jacobsoni infested brood in honey bee colonies with differing pollen stores. Apidologie 2000;31:377–385.

    Article  Google Scholar 

  99. Kolmes SA, Winston ML. Division of labour among worker honey bees in demographically manipulated colonies. Insect Soc 1988; 35:262–270.

    Article  Google Scholar 

  100. Bloch G, Robinson GE. Chronobiology—reversal of honeybee behavioural rhythms. Nature 2001;410:1048.

    Article  PubMed  CAS  Google Scholar 

  101. Hemmer W, Focke M, Kolarich D, Dalik I, Gotz M, Jarisch R. Identification by immunoblot of venom glycoproteins displaying immunoglobulin E-binding N-glycans as cross-reactive allergens in honeybee and yellow jacket venom. Clin Exp Allergy 2004;34: 460–469.

    Article  PubMed  CAS  Google Scholar 

  102. Frew AJ. Immunotherapy of allergic disease. J Allergy Clin Immunol 2003;111:712–719.

    Article  Google Scholar 

  103. Harrison JF, Fewell JH. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera. Comp Biochem Physiol A Mol Integr Physiol 2002;133:323–333.

    Article  PubMed  Google Scholar 

  104. Ohashi K, Sawata M, Takeuchi H, Natori S, Kubo T. Molecular cloning of cDNA and analysis of expression of the gene for alphaglucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem Biophys Res Commun 1996;221:380–385.

    Article  PubMed  CAS  Google Scholar 

  105. Ohashi K, Natori S, Kubo T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur J Biochem 1999;265:127–133.

    Article  PubMed  CAS  Google Scholar 

  106. Pontoh J, Low NH. Purification and characterization of betaglucosidase from honey bees (Apis mellifera). Insect Biochem Mol Biol 2002;32:679–690.

    Article  PubMed  CAS  Google Scholar 

  107. Robinson GE, Vargo EL. Juvenile hormone in adult eusocial hymenoptera: Gonadotropin and behavioral pacemaker. Arch Insect Biochem Physiol 1997;35:559–583.

    Article  PubMed  CAS  Google Scholar 

  108. Capaldi EA, Smith AD, Osborne JL, et al. Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 2000;403:537–540.

    Article  PubMed  CAS  Google Scholar 

  109. Whitfield CW, Cziko AM, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees. Science 2003;302:296–299.

    Article  PubMed  CAS  Google Scholar 

  110. Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE. Influence of gene action across different time scales on behavior. Science 2002;296:741–744.

    Article  PubMed  CAS  Google Scholar 

  111. Tsuchimoto M, Aoki M, Takada M, et al. The changes of gene expression in honeybee (Apis mellifera) brains associated with ages. Zool Sci 2004;21:23–28.

    Article  PubMed  CAS  Google Scholar 

  112. Amdam GV, Omholt SW. The regulatory anatomy of honeybee lifespan. J Theor Biol 2002;216:209–228.

    Article  PubMed  Google Scholar 

  113. Page RE, Peng CYS. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 2001;36:695–711.

    Article  PubMed  Google Scholar 

  114. Neukirch A. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol B Biochem System Environ Physiol 1982;146:35–40.

    Article  CAS  Google Scholar 

  115. Schippers M-P, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB. Lifetime performance in foraging honeybees: Behaviour and physiology. J Exp Biol 2006;209:3828–3836.

    Article  PubMed  Google Scholar 

  116. Schmid-Hempel P, Wolf T. Foraging effort and life span of workers in a social insect. J Anim Ecol 1988;57:500–521.

    Google Scholar 

  117. Tofilski A. Influence of age and polyethism on longevity of workers in social insects. Behav Ecol Sociobiol 2002;51:234–237.

    Article  Google Scholar 

  118. Tofilski A. Senescence and learning in honeybee (Apis mellifera) workers. Acta Neurobiol Exp 2000;60:35–39.

    CAS  Google Scholar 

  119. Schmid-Hempel P, Kacelnik A, Houston AI. Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 1985;17:61–66.

    Article  Google Scholar 

  120. Higginson AD, Gilbert F. Paying for nectar with wingbeats: A new model of honeybee foraging. Proc R Soc Lond B Biol Sci 2004;271:2595–2603.

    Article  CAS  Google Scholar 

  121. Higginson AD, Barnard CJ. Accumulating wing damage affects foraging decisions in honeybees (Apis mellifera L.). Ecol Entomol 2004;29:52–59.

    Article  Google Scholar 

  122. Corona M, Hughes KA, Weaver DB, Robinson GE. Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 2005;126:1230–1238.

    Article  PubMed  CAS  Google Scholar 

  123. Carey JR. Demographic mechanisms for the evolution of long life in social insects. Exp Gerontol 2001;36:713–722.

    Article  PubMed  CAS  Google Scholar 

  124. Stussi T, Harmelin ML. Recherche sur l’ontogenese du rythme circadien de la depense d’energie chez l’Abeille. CR Acad Sci Hebd Seanc Acad Sci D 1966;262:2066–2069.

    CAS  Google Scholar 

  125. Toma DP, Bloch G, Moore D, Robinson GE. Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Natl Acad Sci USA 2000;97:6914–6919.

    Article  PubMed  CAS  Google Scholar 

  126. Moore D, Angel JE, Cheeseman IM, Fahrbach SE, Robinson GE. Timekeeping in the honey bee colony: Integration of circadian rhythms and division of labor. Behav Ecol Sociobiol 1998;43: 147–160.

    Article  Google Scholar 

  127. Moore D. Honey bee circadian clocks: Behavioral control from individual workers to whole-colony rhythms. J Insect Physiol 2001;47:843–857.

    Article  CAS  Google Scholar 

  128. Bloch G, Solomon SM, Robinson GE, Fahrbach SE. Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): Age-and timerelated plasticity. J Comp Neurol 2003;464:269–284.

    Article  PubMed  CAS  Google Scholar 

  129. Elekonich MM, Schulz DJ, Bloch G, Robinson GE. Juvenile hormone levels in honey bee (Apis mellifera L.) foragers: Foraging experience and diurnal variation. J Insect Physiol 2001;47:1119–1125.

    Article  CAS  Google Scholar 

  130. Jassim O, Huang ZY, Robinson GE. Juvenile hormone profiles of worker honey bees, Apis mellifera, during normal and accelerated behavioural development. J Insect Physiol 2000;46:243–249.

    Article  PubMed  CAS  Google Scholar 

  131. Kubo T, Sasaki M, Nakamura J, et al. Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L) with age and/or role. J Biochem 1996;119:291–295.

    PubMed  CAS  Google Scholar 

  132. Fluri P, Lüsher M, Willie H, Gerig L. Changes in weight of the pharyngeal gland and haemolymph titers of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol 1982;28:61–68.

    Article  CAS  Google Scholar 

  133. Bloch G, Sullivan JP, Robinson GE. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J Insect Physiol 2002;48:1123–1131.

    Article  PubMed  CAS  Google Scholar 

  134. Rose U, Ferber M, Hustert R. Maturation of muscle properties and its hormonal control in an adult insect. J Exp Biol 2001;204: 3531–3545.

    PubMed  CAS  Google Scholar 

  135. Dingle H, Winchell R. Juvenile hormone as a mediator of plasticity in insect life histories. Arch Insect Biochem Physiol 1997;35:359–373.

    Article  CAS  Google Scholar 

  136. Zera AJ, Cisper G. Genetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: Implications for the evolution of life histories and dispersal. Physiol Biochem Zool 2001;74:293–306.

    Article  PubMed  CAS  Google Scholar 

  137. Zhao ZW, Zera AJ. The hemolymph JH titer exhibits a largeamplitude, morph-dependent, diurnal cycle in the wing-polymorphic cricket, Gryllus firmus. J Insect Physiol 2004;50:93–102.

    Article  PubMed  CAS  Google Scholar 

  138. Sullivan JP, Fahrbach SE, Harrison JF, Capaldi EA, Fewell JH, Robinson GE. Juvenile hormone and division of labor in honey bee colonies: Effects of allatectomy on flight behavior and metabolism. J Exp Biol 2003;206:2287–2296.

    Article  PubMed  CAS  Google Scholar 

  139. Dyer FC. The biology of the dance language. Annu Rev Entomol 2002;47:917–949.

    Article  PubMed  CAS  Google Scholar 

  140. Menzel R, Giurfa M. Dimensions of cognition in an insect, the honeybee. Behav Cogn Neurosci Rev 2006;5:24–40.

    Article  PubMed  Google Scholar 

  141. Bitterman ME, Menzel R, Fietz A, Schafer S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 1983;97:107–119.

    Article  PubMed  CAS  Google Scholar 

  142. Takeda K. Classical conditioned response in the honey bee. J Insect Physiol 1961;6:168–179.

    Article  CAS  Google Scholar 

  143. Menzel R. Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 2001;8:53–62.

    Article  PubMed  CAS  Google Scholar 

  144. Meller VH, Davis RL. Biochemistry of insect learning: Lessons from bees and flies. Insect Biochem Mol Biol 1996;26:327–335.

    Article  PubMed  CAS  Google Scholar 

  145. Müller U. Second messenger pathways in the honeybee brain: Immunohistochemistry of protein kinase A and protein kinase C. Microsc Res Tech 1999;45:165–173.

    Article  PubMed  Google Scholar 

  146. Locatelli F, Bundrock G, Muller U. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci 2005;25:11614–11618.

    Article  PubMed  CAS  Google Scholar 

  147. Elder HY. Muscle structure. In: Usherwood PNR, Ed. Insect Muscle. London: Academic Press, 1975.

    Google Scholar 

  148. Rothe U, Natchtigall W. Flight of the honey bee IV: Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B Biochem System Environ Physiol 1989;158: 739–749.

    Article  Google Scholar 

  149. Suarez RK. Energy metabolism during insect flight: Biochemical design and physiological performance. Physiol Biochem Zool 2000;73:765–771.

    Article  PubMed  CAS  Google Scholar 

  150. Stokes DR. Insect muscle innervated by single motorneurons: Structural and biochemical features. Am Zool 1987;27:1001–1010.

    Google Scholar 

  151. Wegener G. Flying insects: Model systems in exercise physiology. Experientia 1996;52:404–412.

    Article  PubMed  CAS  Google Scholar 

  152. Josephson RK, Malamud JG, Stokes DR. Asynchronous muscle: A primer. J Exp Biol 2000;203:2713–2722.

    PubMed  CAS  Google Scholar 

  153. Dickinson MH, Tu MS. The function of Dipteran flight muscle. Comp Biochem Physiol 1997;116A:223–238.

    Article  CAS  Google Scholar 

  154. Dickinson MH, Lehmann FO, Chan WP. The control of mechanical power in insect flight. Am Zool 1998;38:718–728.

    CAS  Google Scholar 

  155. Roberts SP, Harrison JF. Mechanisms of thermal stability during flight in the honeybee Apis mellifera. J Exp Biol 1999;202:1523–1533.

    PubMed  Google Scholar 

  156. Fewell JH, Harrison JF. Variation in worker behavior of African and European honey bees. Proceedings of the Second International Congress on Africanized Bees and Bee Mites, Tucson, AZ, 2001.

    Google Scholar 

  157. Harrison JM. Caste-specific changes in honeybee flight capacity. Physiol Zool 1986;59:175–187.

    Google Scholar 

  158. Moritz RFA. Biochemical changes during honeybee flight muscle development. In: Nachtigall W, Ed. The Flying Honeybee; Aspects of Energetics. Stuttgart: Gustav Fischer, 1988:51–65.

    Google Scholar 

  159. Coelho JR, Mitten JB. Oxygen consumption during hovering is associated with genetic variation of enzymes in honey-bees. Funct Ecol 1988; 2:141–146.

    Article  Google Scholar 

  160. Harrison JF, Fewell JH, Roberts SP, Hall HG. Achievement of thermal stability by varying metabolic heat production in flying honeybees. Science 1996;274:88–90.

    Article  PubMed  CAS  Google Scholar 

  161. Blomstrand E, Eckblom B, Newsholme E. Maximum activities for key glycolytic and oxidative enzymes in human muscle from differently trained individuals. J Physiol 1986;381:111–118.

    PubMed  CAS  Google Scholar 

  162. Suarez RK, Staples JF, Lighton JRB. Turnover rates of mitochondrial respiratory chain enzymes in flying honey bees (Apis mellifera). J Exp Zool 1999;283:1–6.

    Article  Google Scholar 

  163. Suarez RK, Lighton JRB, Moyes CD, Brown CS, Gass CL, Hochachka PW. Fuel selection in rufous hummingbirds: Ecological implications of metabolic biochemistry. Proc Natl Acad Sci USA 1990;87:9207–9210.

    Article  PubMed  CAS  Google Scholar 

  164. Suarez RK, Lighton JR, Joos B, Roberts SP, Harrison JF. Energy metabolism, enzymatic flux capacities and metabolic flux rates in flying honeybees. Proc Natl Acad Sci USA 1996;93:12616–12620.

    Article  PubMed  CAS  Google Scholar 

  165. Roberts SP, Elekonich MM. Muscle biochemistry and the ontogeny of flight capacity during behavioral development in the honey bee, Apis mellifera. J Exp Biol 2005;208:4193–4198.

    Article  PubMed  CAS  Google Scholar 

  166. Gupta P, Greenberger PA. 4. Stinging insect allergy and venom immunotherapy. Allergy Asthma Proc 2004;25:9–10.

    Google Scholar 

  167. Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JNG. Diagnosis of Hymenoptera venom allergy. Allergy 2005;60:1339–1349.

    Article  PubMed  CAS  Google Scholar 

  168. Hamilton RG. Diagnostic methods for insect sting allergy. Curr Opin Allergy Clin Immunol 2004;4:297–306.

    Article  PubMed  Google Scholar 

  169. Quercia O, Emiliani F, Pecora S, Burastero SE, Stefanini GF. Efficacy, safety, and modulation of immunologic markers by immunotherapy with honeybee venom: Comparison of standardized quality depot versus aqueous extract. Allergy Asthma Proc 2006;27: 151–158.

    PubMed  CAS  Google Scholar 

  170. Hemmer W, Focke M, Kolarich D, et al. Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. J Allergy Clin Immunol 2001;108:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  171. Rueff F, Przybilla B, Muller U, Mosbech H. The sting challenge test in Hymenoptera venom allergy. Allergy 1996;51:216–225.

    Article  PubMed  CAS  Google Scholar 

  172. Rueff F, Wolf H, Schnitker J, Ring J, Przybilla B. Specific immunotherapy in honeybee venom allergy: A comparative study using aqueous and aluminium hydroxide adsorbed preparations. Allergy 2004;59:589–595.

    Article  PubMed  CAS  Google Scholar 

  173. Kettner A, Hughes GJ, Frutiger S, et al. Api m 6: A new bee venom allergen. J Allergy Clin Immunol 2001; 107:914–920.

    Article  PubMed  CAS  Google Scholar 

  174. Peiren N, de Graaf DC, Brunain M, et al. Molecular cloning and expression of icarapin, a novel IgE-binding bee venom protein. FEBS Lett 2006;580:4895–4899.

    Article  PubMed  CAS  Google Scholar 

  175. Pedersen SF, Poulsen KA, Lambert IH. Roles of phospholipase A2 isoforms in the swelling-and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts. Am J Physiol Cell Physiol 2006;291(6):C1286–1296.

    Article  CAS  Google Scholar 

  176. Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Thurnher M. Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol Immunother 2006;55:1374–1383.

    Article  PubMed  CAS  Google Scholar 

  177. Grisotto LSD, Mendes GE, Castro I, et al. Mechanisms of bee venom-induced acute renal failure. Toxicon 2006;48:44–54.

    Article  PubMed  CAS  Google Scholar 

  178. Muller UR. Bee venom allergy in beekeepers and their family members. Curr Opin Allergy Clin Immunol 2005;5:343–347.

    Article  PubMed  Google Scholar 

  179. Lee JD, Park HJ, Chae Y, Lim S. An overview of bee venom acupuncture in the treatment of arthritis. Evidence-Based Compl Alt Med 2005;2:79–84.

    Article  Google Scholar 

  180. Kang SS, Pak SC, Choi SH. The effect of whole bee venom on arthritis. Am J Chin Med 2002;30:73–80.

    Article  PubMed  CAS  Google Scholar 

  181. Lee SH, Hong SJ, Kim SY, et al. Randomized controlled double blind study of bee venom therapy on rheumatoid arthritis. J Korean Acupunct Moxibustion Soc 2003;20:80–83.

    Google Scholar 

  182. Wang OH, Ahn KB, Lim JK, Jang HS. Clinical study of the effectiveness of bee venom therapy on degenerative knee arthritis. J Korean Acupunct Moxibustion Soc 2001;18:35–47.

    Google Scholar 

  183. Wesselius T, Heersema DJ, Mostert JP, et al. A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology 2005;65:1764–1768.

    Article  PubMed  CAS  Google Scholar 

  184. O’Connell N. It’s all the buzz. Nurs Stand 2005;20:22–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Elekonich, M.M. (2008). Biomedical Research with Honey Bees. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics