Skip to main content

Membrane Separation: Basics and Applications

  • Chapter
  • First Online:
Book cover Membrane and Desalination Technologies

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 13))

Abstract

Due to the limited new water resources, the focus of water industry has shifted more towards reclamation, reuse and recycling of raw water/wastewater and seawater desalination. Rising treatment costs and spatial limits also pose a greater pressure on the development of alternative technologies. Compared with traditional water and wastewater treatment technologies, membrane separation has been increasingly received much more considerable interests due to wide applicability, reliable performance, low operating and maintenance costs of membrane systems. The membrane fouling is still a principal obstacle in application of this technology.

This chapter first briefly introduces basic concepts for membrane separation including membrane definition, membrane types, membrane formation and characterization, module configuration, mass transport mechanism in membranes. Key factors such as process design, economic assessment in membrane systems are also covered. Moreover, it describes fouling formation and the strategies to control membrane fouling. Several detailed case studies will be cited to explain membrane separation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong HS (1997) Challenges ahead for Singapore’s water supply. Seminar on Ensuring Singapore’s Water Supply: Options and Issues, Shangri-la Hotel, 10–11 November

    Google Scholar 

  2. Joel M, Peter EO, Mark RW (1996) Water treatment membrane process. McGraw-Hill, New York, pp 17.1–17.31

    Google Scholar 

  3. Judd S, Jefferson B (eds) (2003) Membrane for industrial wastewater recovery and re-use. Elsevier Advanced Technology, Oxford

    Google Scholar 

  4. Chen JP, Kim SL, Ting YP (2003) Optimization of feed pretreatment for membrane filtration of secondary effluent. J Memb Sci 219:27–45

    CAS  Google Scholar 

  5. Kim SL, Chen JP, Ting YP (2002) Study on feed pretreatment for membrane filtration of secondary effluent. Sep Purif Technol 29:171–179

    Google Scholar 

  6. Letterman RD (ed) (1999) Water quality and treatment: a handbook of community water supplies, 5th edn. McGraw-Hill, New York

    Google Scholar 

  7. Ho WSW, Sirkar KK (eds) (1992) Membrane handbook. Chapman & Hall, New York

    Google Scholar 

  8. Singapore Public Utilities Board (2002) Singapore water reclamation study, expert panel review and findings. Singapore Government, Singapore

    Google Scholar 

  9. Matsuura T (2001) Progress in membrane science and technology for seawater desalination – a review. Desalination 134:47–54

    CAS  Google Scholar 

  10. Matsuura T (1994) Synthetic membranes and membrane separation processes. CRC, Boca Raton, FL

    Google Scholar 

  11. Matsuura T, Sourirajan S (1972) Studies on reverse osmosis for water pollution control. Water Res 6:1073–1086

    CAS  Google Scholar 

  12. Metcalf and Eddy, Inc. (ed) (2002) Wastewater engineering: treatment disposal and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  13. Mulder M (1996) Basic principles of membrane technology. Kluwer, Dordrecht

    Google Scholar 

  14. Economic Commission for Europe (1990) Membrane technology in the chemical industry. United Nations Publication, New York

    Google Scholar 

  15. Noyes R (ed) (1994) Unit operations in environmental engineering. Noyes, Park Ridge, NJ, pp 239–264

    Google Scholar 

  16. Madaeni SS, Fane AG, Grohmann GS (1995) Virus removal from water and wastewater using membranes. J Memb Sci 102:65–75

    CAS  Google Scholar 

  17. Sudilovskiy PS, Kagramanov GG, Trushin AM, Kolesnikov VA (2007) Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration. Clean Technol Environ Policy 9:189–198

    CAS  Google Scholar 

  18. Futamura O, Katoh M, Takeuchi K (1994) Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination 98:17–25

    CAS  Google Scholar 

  19. Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J, Drioli E (2003) Membrane treatment by nanofiltration of exhausted vegetable tanning liquors from the leather industry. Water Res 37:2426–2434

    CAS  PubMed  Google Scholar 

  20. Rai UK, Muthukrishnan M, Guha BK (2008) Tertiary treatment of distillery wastewater by nanofiltration. Desalination 230:70–78

    CAS  Google Scholar 

  21. Laine JM, Vial D, Moulart P (2000) Status after 10 years of operation – overview of UF technology today. Desalination 131:17–25

    CAS  Google Scholar 

  22. Molinari R, Gallo S, Argurio P (2004) Metal ions removal from wastewater or washing water contaminated soil by ultrafiltration-complexation. Water Res 38:593–600

    CAS  PubMed  Google Scholar 

  23. Wu CJ, Li A, Li L, Zhang L, Wang H, Qi XH, Zhang QX (2008) Treatment of oily water by a poly (vinyl alcohol) ultrafiltration membrane. Desalination 225:312–321

    CAS  Google Scholar 

  24. Subhi AJ, Anne N (2008) An experimental evaluation of reverse osmosis membrane performance in oily water. Desalination 228:287–294

    Google Scholar 

  25. Belkacem M, Bensadok K, Refes A, Charvier PM, Nezzal G (2008) Water produce for pharmaceutical industry role of reverse osmosis stage. Desalination 221:298–302

    CAS  Google Scholar 

  26. Seader JD, Henley EJ (1998) Separation process principles. Wiley, New York

    Google Scholar 

  27. Geankoplis CJ (2003) Transport processes and separation process principles, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  28. Sadrzadeh M, Mohammadi T (2008) Sea water desalination using electrodialysis. Desalination 221:440–447

    CAS  Google Scholar 

  29. Reddad Z, Gerente C, Andres Y, Thibault JF (2003) Cadmium and lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modelling. Water Res 37:3983–3991

    CAS  PubMed  Google Scholar 

  30. Van Dijk L, Roncken GCG (1997) Membrane bioreactor for wastewater treatment: the state of art and new developments. Water Sci Technol 10:35–41

    Google Scholar 

  31. Raman LP, Cheryan M, Rajagopalan N (1994) Consider nanofiltration for membrane separations. Chem Eng Progr 90:68–74

    CAS  Google Scholar 

  32. Yesselman RJ, Wang LK (1987) Reverse osmosis. Technical Report No. LIR/02-87/2.47. Lenox Institute of Water Technology, Lenox, MA, 115 pp

    Google Scholar 

  33. Sa-nguanruksa J, Rujiravanit R, Supaphol P, Tokura S (2004) Porous polyethylene membranes by template-leaching technique: preparation and characterization. Polym Test 23:91–99

    CAS  Google Scholar 

  34. Young TH, Huang YH, Chen LY (2000) Effect of solvent evaporation on the formation of asymmetric and symmetric membranes with crystallizable EVAL polymer. J Memb Sci 164:111–120

    CAS  Google Scholar 

  35. Wijmans JG, Baaij JPB, Smolders CA (1983) The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J Memb Sci 14:263–274

    CAS  Google Scholar 

  36. Reuvers AJ, Van den Berg JWA, Smolders CA (1987) Formation of membranes by means of immersion precipitation: part 1. A model to describe mass transfer during immersion precipitation. J Memb Sci 34:45–65

    CAS  Google Scholar 

  37. Chung TS, Shieh JJ, Qin J, Lin WH, Wang R (2001) Polymeric membranes for reverse osmosis, ultrafiltration, microfiltration, gas separation, pervaporation, and reactor applications. In: Nalwa HS (ed) Advanced functional molecules and polymers, Chap. 7. Gordon & Breach, New York, pp 219–264

    Google Scholar 

  38. Wang KY, Chung TS (2005) The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin. J Memb Sci 247:37–50

    CAS  Google Scholar 

  39. Zhu G, Chung TS, Loh KC (2000) Activated carbon-filled cellulose acetate hollow fibre membrane for cell immobilisation and phenol degradation. J Appl Polym Sci 76:695–707

    CAS  Google Scholar 

  40. Porter MC (1997) Membrane filtration. In: Schweitzer PA (ed) Handbook of separation technologies for chemical engineers, 3rd edn, Sect. 21. McGraw-Hill, New York

    Google Scholar 

  41. Pinnau I, Freeman BD (2000) Formation and modification of polymeric membranes: overview. In: Pinnau I, Freeman BD (eds) Membrane formation and modification. American Chemical Society, Washington, DC, pp 1–22

    Google Scholar 

  42. Zsigmondy R, Bachmann W (1922) Filter and method of producing same. U.S. Patent No. 1,421,341. U.S. Patent and Trademarks Office, Washington, DC

    Google Scholar 

  43. Rezac ME, Le Roux JD, Chen H, Paul DR, Koros WJ (1994) Effect of mild solvent post-treatments on the gas transport properties of glassy polymer membranes. J Memb Sci 90:213–229

    CAS  Google Scholar 

  44. Li RH, Barbari TA (1995) Performance of poly (vinyl alcohol) thin-gel composite ultrafiltration membranes. J Memb Sci 105:71–78

    CAS  Google Scholar 

  45. Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP (2004) Influence of processing conditions on the properties of ultrafiltration membranes. J Memb Sci 231:209–224

    CAS  Google Scholar 

  46. Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon 32:1419–1425

    CAS  Google Scholar 

  47. Lonsdale HK (1996) Properties of cellulose acetate membranes. In: Merten U (ed) Desalination by reverse osmosis, Chap. 4. MIT, Cambridge

    Google Scholar 

  48. Schulz RD, Asunmaa SK (1970) Ordered water and the ultrastructure of the cellular plasma membrane. In: Danielli JF, Riddiford AC, Rosenberg M (eds) Recent progress in surface science, vol. 3. Academic, New York, pp 291–332

    Google Scholar 

  49. Geankoplis J (2003) Transport processes and separation processes principles, 4th edn. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  50. Duranceau SJ (ed) (2001) Membrane practices for water treatment. American Water Works Association, Denver, CO, pp 3–42

    Google Scholar 

  51. Moch I Jr, Chapman M, Steward D (2003) Development of a CD-ROM cost program for water treatment projects. Membr Technol 6:5–8

    Google Scholar 

  52. Wetterau GE, Clark MM, Anselme C (1996) A dynamic model for predicting fouling effects during the ultrafiltration of a groundwater. J Memb Sci 109:185–204

    CAS  Google Scholar 

  53. Cabassud C, Anselme C, Bersillon JL, Aptel P (1991) Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment. Filtr Sep 28:194–198

    Google Scholar 

  54. Dudley LY (1998) Membrane autopsies for reversing fouling in reverse osmosis. Membr Technol 95:9–12

    Google Scholar 

  55. Basu OD, Huck PM (2004) Integrated biofilter-immersed membrane system for the treatment of humic waters. Water Res 38:655–662

    CAS  PubMed  Google Scholar 

  56. Winfield BA (1979) A study of the factors affecting the rate of fouling of reverse osmosis membranes treating secondary sewage effluent. Water Res 13:565–569

    CAS  Google Scholar 

  57. Koyuncu I, Topacik D, Wiesner MR (2004) Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Res 38:432–440

    CAS  PubMed  Google Scholar 

  58. Weisner MR, Aptel P (1996) Mass transport and permeate flux and fouling in pressure-driven processes. In: Odendaal PE, Wiesner MR, Mallevialle J (eds) Water treatment membrane processes. McGraw-Hill, New York, pp 4.1–4.30

    Google Scholar 

  59. Carroll T, Booker NA, Meier-Haack J (2002) Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. J Memb Sci 203:3–13

    CAS  Google Scholar 

  60. Khedr MG (1998) A case study of RO plant failure due to membrane fouling, analysis and diagnosis. Desalination 120:107–113

    CAS  Google Scholar 

  61. Sadr Ghayeni SB, Madaeni SS, Fane AG, Schneider RP (1996) Aspects of microfiltration and reverse osmosis in municipal wastewater reuse. Desalination 106:25–29

    Google Scholar 

  62. Sadr Ghayeni SB, Beatson PJ, Schneider RP, Fane AG (1998) Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation. Desalination 116:65–80

    Google Scholar 

  63. Sadr Ghayeni SB, Beatson PJ, Schneider RP, Fane AJ (1999) Bacterial passage through microfiltration membranes in wastewater applications. J Memb Sci 153:71–82

    CAS  Google Scholar 

  64. Butt FH, Rahman F, Baduruthamal U (1997) Characterisation of foulants by autopsy of RO desalination membranes. Desalination 114:51–64

    CAS  Google Scholar 

  65. Baker JS, Dudley LY (1998) Biofouling in membrane systems – a review. Desalination 118:81–90

    CAS  Google Scholar 

  66. Groves GR (1983) Application of membrane separation processes to the treatment of industrial effluents for water reuse. Desalination 47:277–284

    CAS  Google Scholar 

  67. Yuan W, Zydney AL (1999) Humic acid fouling during microfiltration. J Memb Sci 157:1–12

    CAS  Google Scholar 

  68. Kim SL (2002) M. Eng Thesis, National University of Singapore

    Google Scholar 

  69. Mills WR Jr, Bradford SM, Rigby M, Wehner MP (1998) Groundwater recharge at the orange county water district. In: Takashi A (ed) Wastewater reclamation and reuse. Technomic Publishing, Lancaster, PA, pp 1105–1142

    Google Scholar 

  70. Ebrahim S (1994) Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art. Desalination 96:225–238

    CAS  Google Scholar 

  71. Wilf M (1998) Reverse osmosis membranes for wastewater reclamation. In: Takashi A (ed) Wastewater reclamation and reuse. Technomic Publishing, Lancaster, PA, pp 236–344

    Google Scholar 

  72. Jolis D, Campana R, Hirano RA, Pitt P, Mariñas B (1995) Desalination of municipal wastewater for horticultural reuse: process description and evaluation. Desalination 103:1–10

    CAS  Google Scholar 

  73. Jolis D, Hirano RA, Pitt PA, Müller A, Mamais D (1996) Assessment of tertiary treatment technology for water reclamation in San Francisco, California. Water Sci Technol 33(10–11):181–192

    CAS  Google Scholar 

  74. Cikurel H, Rebhun M, Amirtharajah A, Adin A (1996) Wastewater effluent reuse by in-line flocculation filtration process. Water Sci Technol 33:203–211

    CAS  Google Scholar 

  75. Reith C, Birkenhead B (1998) Membranes enabling the affordable and cost effective reuse of wastewater as an alternative water source. Desalination 117:203–210

    CAS  Google Scholar 

  76. Del Pino MP, Durham B (1999) Wastewater reuse through dual-membrane processes: opportunities for sustainable water resources. Desalination 124:271–277

    CAS  Google Scholar 

  77. Van Houtte E, Verbauwhede J, Vanlerberghe F, Demunter S, Cabooter J (1998) Treating different types of raw water with micro- and ultrafiltration for further desalination using reverse osmosis. Desalination 117:49–60

    CAS  Google Scholar 

  78. Teodosiu CC, Kennedy MD, Van Straten HA, Schippers JC (1999) Evaluation of secondary refinery effluent treatment using ultrafiltration membranes. Water Res 33:2172–2180

    CAS  Google Scholar 

  79. Qin JJ, Wai MN, Oo MH, Wong FS (2002) A feasibility study on the treatment and recycling of a wastewater from metal plating. J Memb Sci 208:213–221

    CAS  Google Scholar 

  80. Sierka RA, Cooper SP, Pagoria PS (1997) Ultrafiltration and reverse osmosis treatment of an acid stage wastewater. Water Sci Technol 35:155–161

    CAS  Google Scholar 

  81. Fane AG (1996) Membranes for water production and wastewater reuse. Desalination 106:1–9

    CAS  Google Scholar 

  82. Kruithof JC, Schippers JC, Kamp PC, Folmer HC, Hofman JAMH (1998) Integrated multi-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination 117:37–48

    CAS  Google Scholar 

  83. Hills P, Padley MB, Powell NI, Gallegher PM (1998) Effects of backwash conditions on out-to-in membrane microfiltration. Desalination 118:197–204

    Google Scholar 

  84. Freeman SDN, Morin OJ (1995) Recent developments in membrane water reuse projects. Desalination 103:19–30

    CAS  Google Scholar 

  85. Belfort G (1977) Pretreatment and cleaning of hyperfiltration (reverse osmosis) membranes in municipal wastewater renovation. Desalination 21:285–300

    CAS  Google Scholar 

  86. Liikanen R, Yli-Kuivila J, Laukkanen R (2002) Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. J Memb Sci 195:265–276

    CAS  Google Scholar 

  87. Trägårdh G (1989) Membrane cleaning. Desalination 71:325–335

    Google Scholar 

  88. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Memb Sci 132:159–181

    CAS  Google Scholar 

  89. Lindau J, Jonsson AS (1994) Cleaning of ultrafiltration membranes after treatment of oily waste water. J Memb Sci 87:71–78

    CAS  Google Scholar 

  90. Graham SI, Reitz RL, Hickman CE (1989) Improving reverse osmosis performance by periodic cleaning. Desalination 74:113–124

    CAS  Google Scholar 

  91. Ebrahim S, El-Dessouky H (1994) Evaluation of commercial cleaning agents for seawater reverse osmosis membranes. Desalination 99:169–188

    CAS  Google Scholar 

  92. Ridgway HF, Justice CA, Whittaker C, Argo DG, Olson BH (1984) Biofilm fouling of RO membranes – its nature and effect on treatment of water reuse. J Am Water Works Assoc 76:94–102

    CAS  Google Scholar 

  93. Darton EG, Turner AG (1991) Operating experiences in a sea water reverse osmosis plant in Gibraltar (1987–1990). Desalination 82:51–69

    CAS  Google Scholar 

  94. Flemming HC, Schaule G, McDonogh R, Ridgway HF (1994) Effects and extent of biofilm accumulation in membrane systems. In: Geesey GG, Lewandowski Z, Flemming HC (eds) Biofouling and biocorrosion in industrial water systems. Lewis, Chelsea, MI, pp 63–89

    Google Scholar 

  95. Wilf M, Glueckstern P (1985) Restoration of commercial reverse osmosis membranes under field conditions. Desalination 54:343–350

    CAS  Google Scholar 

  96. Pervov AG (1991) Scale formation prognosis and cleaning procedure schedules in reverse osmosis systems operation. Desalination 83:77–118

    CAS  Google Scholar 

  97. Farinas M, Granda JM, Gurtubi L, Villagra MJ (1987) Pilot experiences on recovery of polluted reverse osmosis membranes. Desalination 66:385–402

    CAS  Google Scholar 

  98. Sheikholeslami R (1999) Fouling mitigation in membrane processes. Desalination 123:45–53

    CAS  Google Scholar 

  99. Teodosiu CC, Kennedy MD, Van Straten HA, Schippers JC (1999) Evaluation of secondary refinery effluent treatment using ultrafiltration membranes. Water Res 33:2172–2180

    CAS  Google Scholar 

  100. Wang Y, Huang X, Yuan Q (2005) Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochem 40:1733–1739

    CAS  Google Scholar 

  101. Nakhla G, Lugowski A, Patel J, Rivest V (2006) Combined biological and membrane treatment of food-processing wastewater to achieve dry-ditch criteria: pilot and full-scale performance. Bioresour Technol 97:1–14

    CAS  PubMed  Google Scholar 

  102. Chapman S, Leslie G, Law I (2004) Membrane bioreactors (MBR) for municipal wastewater treatment – an Australian perspective. Available online from http://www.membrane.unsw.edu.au/staff/papers/gleslie/mbr_for_reuse_awa.pdf

  103. Fu ZM, Yang FL, Zhou FF, Xue Y (2009) Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresour Technol 100:136–141

    CAS  PubMed  Google Scholar 

  104. Sridang PC, Pottier A, Wisniewski C, Grasmick A (2008) Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment. J Memb Sci 317:43–49

    CAS  Google Scholar 

  105. Tian JY, Liang H, Li X, You SJ, Tian S, Li GB (2008) Membrane coagulation bioreactor (MCBR) for drinking water treatment. Water Res 42:3910–3920

    CAS  PubMed  Google Scholar 

  106. Yoshino Y, Suzuki T, Taguchi H, Nomura M, Nakao S, Itoh N (2008) Silica membrane tubes for high temperature hydrogen separation. Sep Sci Technol 43:3432–3447

    CAS  Google Scholar 

  107. Huang J, Zou J, Winston Ho WS (2008) Carbon dioxide capture using a CO2-selective facilitated transport membrane. Ind Eng Chem Res 47:1261–1267

    CAS  Google Scholar 

  108. Liu Q, Wang TH, Liang CH, Zhang B, Liu SL, Cao YM, Qiu JS (2008) Zeolite married to carbon: a new family of membrane materials with excellent gas separation performance. Chem Mater 18:6283–6288

    Google Scholar 

  109. Bartlett M, Bird MR, Howell JA (1995) An experimental study for the development of a qualitative membrane cleaning model. J Memb Sci 105:147–157

    CAS  Google Scholar 

  110. Wang LK, Hung YT, Shammas NK (eds) (2005) Physicochemical treatment processes. Humana Press, Totowa, NJ, 723 pp

    Google Scholar 

  111. Wang LK, Kopko S (1997) City of cape coral reverse osmosis water treatment facility. Technical Report No. PB97-139547. U.S. Department of Commerce, National Technical Information Service, Springfield, VA

    Google Scholar 

  112. Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced biological treatment processes. Humana Press, Totowa, NJ, 738 pp

    Google Scholar 

  113. Wang LK, Pereira NC, Hung YT (eds) (2005) Advanced air and noise pollution control. Humana Press, Totowa, NJ, 526 pp

    Google Scholar 

  114. California Coastal Commission (2010) Seawater desalination in California. California Coastal Commission, Sacramento, CA. http://www.coastal.ca.gov/desalrpt/dchap1.html

  115. Levesque S, Wallis-Large C, Hemken B, Bontrager S, Kreuzwiesner S (2009) Plan ahead with MBRs. Water Environ Fed 21(1):34–37

    Google Scholar 

  116. Wang LK, Hung YT, Shammas NK (eds) (2010) Handbook of advanced industrial and hazardous wastes treatment. CRC, Boca Raton, FL, 1346 pp

    Google Scholar 

  117. Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental biotechnology. Humana Press, Totowa, NJ

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank Professor T.S. Neal Chung of Department of Chemical and Biomolecular Engineering, National University of Singapore for providing Fig. 7.6 and input for this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, J.P., Mou, H., Wang, L.K., Matsuura, T., Wei, Y. (2011). Membrane Separation: Basics and Applications. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics