Skip to main content

Potable Water Biotechnology, Membrane Filtration and Biofiltration

  • Chapter
  • First Online:
Membrane and Desalination Technologies

Abstract

Membrane filtration is considered as a simplified drinking water treatment process, which can remove organic impurities, as well as metal ions and other ions. Nowadays, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material and natural organic matter, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection by-products (DBPs). Recently, there have been several advanced technologies derived from the combination of biotechnology and filtration with application for potable water treatment. This chapter describes these techniques which includes biofiltration, membrane bioreactor, ion-exchange membrane bioreactor, and biological activated carbon adsorption-filtration. Several case studies in applying biofiltration for DBP control in bench- and pilot-scale are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Drinking Water Clearinghouse (NDWC) (1999) Membrane Filtration, Tech brief #DWFSOM43, a National Drinking Water Clearinghouse Fact Sheet, Morgantown, WV, March

    Google Scholar 

  2. US EPA (2005) Membrane filtration guidance manual, EPA 815-R-06-009, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  3. Jacangelo JG (1991) The Development of Membrane Technology, International report, Congress of the International Water Supply Association, Copenhagen

    Google Scholar 

  4. Jacangelo JG, Trussell RR, Watson M (1997) Role of membrane technology in drinking water treatment in the United States. Desalination 113:119

    CAS  Google Scholar 

  5. Oppenlander T (2003) Photochemical purification of water and air. Wiley-VCH, Germany

    Google Scholar 

  6. Richardson SD (1998) Drinking water disinfection by-products. In: Meyers RA (ed) The encyclopedia of environmental analysis & remediation, Vol 3. Wiley, NY

    Google Scholar 

  7. Servais P, Laurent P, Randon G (1993) Impact of biodegradable dissolved organic carbon (BDOC) on bacterial dynamics in the distribution system. In: Proceedings of AWWA Water Quality Technology Conference, Miami, FL

    Google Scholar 

  8. Amy GL, Chadik PA, Chowdhury ZK (1987) Developing models for predicting trihalomethane formation potential and kinetics. J Am Water Works Assoc 79:89

    CAS  Google Scholar 

  9. Killops SD (1986) Volatile ozonization products of aqueous humic material. Water Res 20:153

    CAS  Google Scholar 

  10. Glaze WH, Koga M, Cancilla D, Wang K, McGuire MJ, Liang S, Davis MK, Tate CH, Aieta EM (1989) Evaluation of ozonation by-products from two California surface waters. J Am Water Works Assoc 81:66

    CAS  Google Scholar 

  11. Coleman WE, Munch JW, Ringhand HP, Kaylor WH, Mitchell DE (1992) Ozonation/post-chlorination of humic acid: a model for predicting drinking water disinfection by-products. Ozone Sci Eng 14:51

    CAS  Google Scholar 

  12. Le Lacheur RM, Sonnenberg LB, Singer PC, Christman RF, Charles MJ (1993) Identification of carbonyl compounds in environmental samples. Environ Sci Technol 27:2745

    CAS  Google Scholar 

  13. Backlund P, Kronberg L, Pensar G, Tikkanen L (1985) Mutagenic activity in humic water and alum flocculated humic water treated with alternative disinfectants. Sci Total Environ 47:257

    CAS  PubMed  Google Scholar 

  14. Matsuda H, Yamamori H, Sato T, Ose Y, Nagase H, Kito H, Sumida K (1992) Mutagenicity of ozonation products from humic substances and their components. Water Sci Technol 25:363

    CAS  Google Scholar 

  15. Weinberg HS, Glaze WH, Krasner SW, Sclimenti MJ (1993) Formation and removal of aldehydes in plants that use ozone. J Am Water Works Assoc 85:72

    CAS  Google Scholar 

  16. Kooij D (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J Am Water Works Assoc 84:57

    Google Scholar 

  17. Melin ES, Édegaard H (2000) The effect of biofilters loading rate on the removal of organic ozonation by-products. Water Res 34:4464

    CAS  Google Scholar 

  18. US EPA (2000) Giardia: drinking water fact sheet. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  19. Chen KC, Lin YF (1993) The relationship between denitrifying bacteria and methanogenic bacteria in a mixed culture system of acclimated sludges. Water Res 27:1749

    CAS  Google Scholar 

  20. Ergas SJ, Rheinheimer DE (2004) Drinking water denitrification using a membrane bioreactor. Water Res 38:3225

    CAS  PubMed  Google Scholar 

  21. Nolan BT, Ruddy BC, Hitt KJ, Helsel DR (1997) Risk of nitrate in groundwaters of the United States – a national perspective. Environ Sci Technol 31:2229

    CAS  Google Scholar 

  22. Nuhoglu A, Pekdemir T, Yildiz E, Keskinler B, Akay G (2002) Drinking water denitrification by a membrane bio-reactor. Water Res 36:1155

    CAS  Google Scholar 

  23. Crespi M, Ramazzoth V (1991) Evidence that N-nitroso compounds contribute to the causation of certain human cancers. In: Bogardi I, Kuzelka RD (eds) NATO ASI Series, Volume G.30, Nitrate Contamination. Springer, Berlin, p 233

    Google Scholar 

  24. Winto EF (1997) Nitrate in drinking water. J Am Water Works Assoc 63:95

    Google Scholar 

  25. Shuval HI (1980) Infant methemoglobinemia and other health effects of nitrates in drinkingwater. Prog Water Technol 12:1731

    Google Scholar 

  26. Mirvish SS (1977) N-nitroso compounds, nitrate, and nitrite: possible implications for the causation of human cancer. Prog Water Technol 8:195

    CAS  Google Scholar 

  27. Sakakibara Y, Araki K, Watanabe T, Kuroda M (1997) The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater. Water Sci Technol 36:61

    CAS  Google Scholar 

  28. Urbain V, Benoid R, Manem J (1996) Membrane bioreactor: a new treatment tool. J Am Water Works Assoc 88:75

    CAS  Google Scholar 

  29. Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water: review. J Environ Eng 123:371

    CAS  Google Scholar 

  30. Tiedje JM (1990) Ecology of denitrification and dissimilatory nitrate reduction to ammonia. In: Zehnder AJB (ed)Biology of anaerobic microorganisms. Wiley, New York, p 179

    Google Scholar 

  31. Knowles R (1982) Denitrificaton. Microbiological Rev 46:43

    CAS  Google Scholar 

  32. Rittmann BE, Huck PM (1989) Biological treatment of public water. CRC Critical Rev Envir Control 19:119

    Google Scholar 

  33. Hiscock KM, Lloyd JW, Lerner DN (1991) Review of natural and artificial denitrification of groundwater. Water Res 25:1099

    CAS  Google Scholar 

  34. Wang H, Qu J (2003) Combined bioelectrochemical and sulfur autotrophic denitrification for drinkingwater treatment. Water Res 37:3767

    CAS  PubMed  Google Scholar 

  35. Zhang TC, David GL (1999) Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Res 33:599

    CAS  Google Scholar 

  36. Kurt M, Dunn IJ, Bource JR (1987) Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol Bioeng 29:493

    CAS  PubMed  Google Scholar 

  37. Batchelor B, Lawrence AW (1978) Autotrophic denitrification using elemental sulfur. J Water Pollut Control Fed 50:1986

    CAS  Google Scholar 

  38. Rittmann BE, Snoeyink V (1984) Achieving biologically stable drinking water. J Am Water Works Assoc 76:106

    CAS  Google Scholar 

  39. Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040

    CAS  PubMed  Google Scholar 

  40. Flere JM, Zhang TC (1998) Sulfur-based autotrophic denitrification pond systems for in situ remediation of nitratecontaminated surface water. Water Sci Technol 38:15

    CAS  Google Scholar 

  41. Hoek JP, Hijnen WAM, Bennekom CA, Mijnarends BJ (1992) Optimization of the sulphur-limestone filtration process for nitrate removal from groundwater. J Water Suppl Res Technol-Aqua 41:209

    Google Scholar 

  42. Schippers JC, Kruithof JC, Mulder FG, Lieshout JW (1987) Removal of nitrate by slow sulphur limestone filtration. J Aqua 5:274

    Google Scholar 

  43. Buttiglieri G, Malpei F, Daverio E, Melchiori M, Nieman H and Ligthart J (2005) Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor. Desalination 178:211

    CAS  Google Scholar 

  44. National Drinking Water Clearinghouse (NDWC) (2000) Slow sand filtration, Tech brief #DWFSOM40, a National Drinking Water Clearinghouse Fact Sheet, Morgantown, WV, June

    Google Scholar 

  45. Vigneswaran S, Visvanathan C (1995) Water treatment processes: simple options. CRC, Boca Raton, FL

    Google Scholar 

  46. Clark RM, Clark DA (1995) Drinking water quality management. Technomic, Lancaster, PA

    Google Scholar 

  47. Hozalski RM (1996) Removal of biodegradable organic matter in drinking water biofilters: experimental studies and model development, Ph.D. dissertation. The Johns Hopkins University, Baltimore, MA

    Google Scholar 

  48. Cohen Y (2001) Biofiltration – the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol 77:257

    CAS  PubMed  Google Scholar 

  49. Hozalski RM, Bouwer EJ (2001) Non-steady state simulation of BOM removal in drinking water biofilters: Model development. Water Res 35:198

    CAS  PubMed  Google Scholar 

  50. Kolot FB (1988) Principles, techniques and industrial applications. In: Robert E (ed) Immobilized microbial systems. Krieger, New York

    Google Scholar 

  51. Crope WA (1970) Attachment of marine bacteria to solid surfaces. In: Manly P (ed) Biological adhesion, Vol 73. Academic, New York

    Google Scholar 

  52. Cochet N, Lebeault JM, Vijayalakshmi A (1990) Physicochemical aspects of cell adsorption. In: Tyagi RD, Vembo K (eds) Wastewater treatment by immobilized cells. CRC, Boca Raton

    Google Scholar 

  53. Kosaric N, Blaszczyk R (1990) The morphology and electron microscopy of microbial aggregates. In: Tyagi RD, Vembo K (eds) Wastewater treatment by immobilized cells. CRC, Boca Raton

    Google Scholar 

  54. Wanner J (1994) Activated sludge: bulking and foaming control. In: A Technomic publication, CRC, Boca Raton

    Google Scholar 

  55. Wanner O, Gujer W (1984) Competition in biofilms. Water Sci Technol 17:27

    Google Scholar 

  56. Bickerstaff GF (1997) Immobilization of enzymes and cells. In: Bickerstar GF (ed) Immobilization of enzymes and cells. Humana, Clifton, UK

    Google Scholar 

  57. Tampion J, Tampion MD (1987) Immobilized cells: principles and application. Cambridge University Press, Cambridge

    Google Scholar 

  58. Iorio G, Calabro V (1995) Biotechnological applications of membrane systems in the agro-food industry. In: Ana, membrane technology: applications to industrial wastewater treatment, Kluwer, Dordrecht

    Google Scholar 

  59. Sutton PM, Mishra PN (1996) The membrane biological reactor for industrial wastewater treatment and bioremediation. In: Hickey RF, Smith GL (eds) Biotechnology in industrial waste treatment and bioremediation. CRC, Boca Raton

    Google Scholar 

  60. Gaeta SN (1995) The industrial development of polymeric membranes and membrane modules for reverse osmosis and ultrafiltration. In: Caetano A, Norberta PM, Drioli E, Muntau H (eds) Membrane technology: applications to industrial wastewater treatment. Kluwer, Dordrecht

    Google Scholar 

  61. Hozalski RM, Bouwer EJ, Goel S (1999) Removal of natural organic matter (nom) from drinking water supplies by ozone-biofiltration. Water Sci Technol 40:157

    CAS  Google Scholar 

  62. Urfer D, Huck PM, Booth S, Coffey BM (1997) Biological filtration for BOM and particle removal: a critical review. J Am Water Work Assoc 89:83

    CAS  Google Scholar 

  63. Huck PM, Anderson WB, Savage EA, Borstel RC, Daignault SA, Rector DW, Irvine GA, Williams DT (1989) Pilot scale evaluation of ozone and other drinking water disinfectants using mutagenicity testing. Ozone Sci Eng 11:245

    CAS  Google Scholar 

  64. Gagnon GA, Booth SDJ, Peldszus S, Mutti D, Smith F, Huck PM (1997) Carboxylic acids: formation and removal in full-scale plants. J Am Water Works Assoc 89:88

    CAS  Google Scholar 

  65. Urfer D, Huck PM (2001) Measurement of biomass activity in drinking water biofilters using a respirometric method. Water Res 35:1469

    CAS  PubMed  Google Scholar 

  66. Hozalski RM, Bouwer EJ (2001) Non-steady state simulation of BOM removal in drinking water biofilters: applications and full-scale validation. Water Res 35:211

    CAS  PubMed  Google Scholar 

  67. Persson F, Långmark J, Heinicke G, Hedberg T, Tobiason J, Stenström TA, Hermansson M (2005) Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res 39:3791

    CAS  PubMed  Google Scholar 

  68. Yavich AA, Lee KH, Chen KC, Pape L, Masten SJ (2004) Evaluation of biodegradability of NOM after ozonation. Water Res 38:2839

    CAS  PubMed  Google Scholar 

  69. Fonseca AC, Summers RS, Hernandez MT (2001) Comparative measurements of microbial activity in drinking water biofilters. Water Res 35:3817

    CAS  PubMed  Google Scholar 

  70. Waer MA (2006) Multiple barriers for a smelly situation. Am Water Work Assoc 32:3

    Google Scholar 

  71. Soares MIM, Belkin S, Abeliovich A (1988) Biological groundwater denitrification: laboratory studies. Water Sci Technol 20:189

    CAS  Google Scholar 

  72. Kappelhof JWNM, Hoek JP, Hijnen WAM (1992) Experience with fixed-bed denitrification using ethanol as substrate for nitrate removal from groundwater. Water Supply 10:91

    CAS  Google Scholar 

  73. Harremoes P, Jassen JLC, Kristensen GH (1980) Practical problems related to nitrogen bubble formations in fixed film reactors. Prog Water Technol 12:253

    CAS  Google Scholar 

  74. Hoek JP, Kappelhof JWNM, Schippers JC (1994) The use of vacuum deaeration in biological removal processes. Aqua 43:84

    Google Scholar 

  75. Woodbury BL, Dahab MF, Miháltz P, Csikor Z (1998) Evaluation of reversible fixed-film static-bed bio-denitrification reactors. Water Sci Technol 38:311

    CAS  Google Scholar 

  76. Woodbury BL, Dahab MF (2001) Comparison of conventional and two-stage reversible flow, static-bed biodenitrification reactors. Water Res 35:1563

    CAS  PubMed  Google Scholar 

  77. Min B, Evans PJ, Chu AK, Logan BE (2004) Perchlorate removal in sand and plastic media bioreactors. Water Res 38:47

    CAS  PubMed  Google Scholar 

  78. Rittmann BE, Stilwell D, Ohashi A (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res 36:2342

    CAS  PubMed  Google Scholar 

  79. Crawford G, Fernandez A, Shawwa A, Daigger G (2002) Competitive bidding and evaluation of membrane bioreactor equipment – three large case studies. In: Proceedings of WEF 75th Annual Conference 2nd Exposition, Chicago, IL

    Google Scholar 

  80. Yang W, Cicek N, Igl J (2006) State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. J Memb Sci 270:201–211

    CAS  Google Scholar 

  81. Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J Am Water Works Assoc 90:105

    CAS  Google Scholar 

  82. Cicek N (2003) A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can Biosyst Eng 45(6):37

    Google Scholar 

  83. Buisson H, Cote P, Praderie M, Paillard H (1998) The use of immersed membranes for upgrading wastewater treatment plants. Water Sci Technol 37:89

    CAS  Google Scholar 

  84. Cote P, Buisson H, Pound C, Arakaki G (1997) Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination 113:189

    CAS  Google Scholar 

  85. Rosenberger S, Kruger U, Witzig R, Manz W, Szewzyk U, Kraume M (2002) Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Water Res 36:413

    CAS  PubMed  Google Scholar 

  86. Cicek N, Winnen H, Suidan MT, Wrenn BE, Urbain V, Manem J (1998) Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Res 32:1553

    CAS  Google Scholar 

  87. Urbain V, Mobarry B, Silva V, Stahl DA, Rittmann BE, Manem J (1998) Integration of performance, molecular biology and modeling to describe the activated sludge process. Water Sci Technol 37:223

    CAS  Google Scholar 

  88. Visvanathan C, Aim RB, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Env Sci Technol 30:1

    CAS  Google Scholar 

  89. Chang J, Manem J, Beaubien A (1993) Membrane bioprocesses for the denitrification of drinking water supplies. J Memb Sci 80:233

    CAS  Google Scholar 

  90. Li XY, Chu HP (2003) Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res 37:4781

    CAS  PubMed  Google Scholar 

  91. McCleaf PR, Schroeder ED (1995) Denitrification using a membrane-immobilized biofilm. J Am Water Works Assoc 87:77

    CAS  Google Scholar 

  92. Mansell BO, Schroeder ED (1999) Biological denitrification in a continuous flow membrane reactor. Water Res 33:1845

    CAS  Google Scholar 

  93. Xing CH, Yamamoto K, Fukushi K (2006) Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge. J Memb Sci 275:175–186

    CAS  Google Scholar 

  94. Crespo JG, Reis AM (2001) Treatment of aqueous media containing electrically charged compounds, PCT-WO 01/40118 A1, International Patent

    Google Scholar 

  95. Crespo JG, Velizarov S, Reis AM (2004) Membrane bioreactors for the removal of anionic micropollutants from drinking water. Curr Opin Biotechnol 15:463

    CAS  PubMed  Google Scholar 

  96. Velizarov S, Matos C, Reis M, Crespo J (2005) Removal of inorganic charged micropollutants in an ion-exchange membrane bioreactor. Desalination 178:203

    CAS  Google Scholar 

  97. Wiśniewski J, Różańska A, Winnicki T (2005) Removal of troublesome anions from water by means of Donnan dialysis. Desalination 182:339

    Google Scholar 

  98. Velizarov S, Reis MA, Crespo JG (2002) Integrated transport and reaction in an ion exchange membrane bioreactor. Desalination 149:205

    CAS  Google Scholar 

  99. Velizarov S, Reis MA, Crespo JG (2003) Removal of trace mono-valent inorganic pollutants in an ion exchange membrane bioreactor: analysis of transport rate in a denitrification process. J Memb Sci 217:269

    CAS  Google Scholar 

  100. Chudyk WA, Snoeyink VL (1984) Bioregeneration of activateed carbon saturated with phenol. Environ Sci Technol 18:1

    CAS  PubMed  Google Scholar 

  101. Speitel GE Jr., Lu CJ, Turakhia MH (1988) Biodegradation of synthetic organic chemicals in GAC beds. Water Sci Technol 20:463

    CAS  Google Scholar 

  102. Rice RG, Robson CM (1982) Biological activated carbon: enhanced aerobic biological activity in GAC systems. Ann Arbor Science, Ann Arbor, MI

    Google Scholar 

  103. Weber WJ, Pirbazari M, Melson GL (1978) Biological growth on activated carbon: an investigation by scanning electron microscopy. Environ Sci Technol 127:817

    Google Scholar 

  104. Suzuki Y, Mochidzuki K, Takeuchi Y, Yagishita Y, Fukuda T, Amakusa H, Abe H (1996) Biological activated carbon treatment of effluent water from wastewater treatment processes of plating industries. Sep Technol 6:147

    CAS  Google Scholar 

  105. Baker T, Dyer-Smith P, Boere J (1996) Optimizing ozone and GAC in potable water treatment. In: Proceedings of Asian Pacific Conference, Hong Kong, p 42

    Google Scholar 

  106. Jahangir MAQ (1994) Bioregeneration of granular activated carbon. Ph.D. thesis, The University of Birmingham, UK

    Google Scholar 

  107. Rodman CA (1973) Factors involved with biological regeneration of activated carbon adsorbers. J Water Pollut Control Fed 55:1168

    Google Scholar 

  108. Sirotkin AS, Koshkina LY, Ippolitov KG (2001) The BAC-process for treatment of wastewater containing non-ionogenic synthetic surfactants. Water Res 35:3265

    CAS  PubMed  Google Scholar 

  109. Andrews GF, Tien C (1981) Bacterial film growth in adsorbent surfaces. AIChE J 27:396

    CAS  Google Scholar 

  110. Scholz M, Martin RJ (1997) Ecological equilibrium on biological activated carbon. Water Res 31:2959

    CAS  Google Scholar 

  111. Hoek JP, Hofman JAMH, Graveland A (1999) The use of biological activated carbon filtration for the removal of natural organic matter and organic micropollutants from water. Water Sci Technol 40:257

    Google Scholar 

  112. Nishijima W, Okada M (1998) Particle separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological activated carbon. Water Sci Technol 37:117

    CAS  Google Scholar 

  113. Kim WH, Nishijima W, Shoto E, Okada M (1997) Competitive removal of dissolved organic carbon by adsorption and biodegradation on biological activated carbon. Water Sci Technol 35:147

    CAS  Google Scholar 

  114. Kameya T, Hada T, Urano K (1997) Changes of adsorption capacity and pore distribution of biological activated carbon on advanced water treatment. Water Sci Technol 35:155

    CAS  Google Scholar 

  115. Wang LK, Kopko SP (1997) City and Cape Coral Reverse Osmosis Water Treatment Facility, Technical report PB97–139547, US Department of Commerce, National Technical Information Service, Springfield, VA, Fluid Particle Separation J., 10, 144

    Google Scholar 

  116. Wang LK, Hung YT, Shammas NK (2005) Physicochemical treatment processes. Humana, Totowa, NJ, p 723

    Google Scholar 

  117. Wang LK, Hung YT, Shammas NK (2006) Advanced physicochemical treatment processes. Humana, Totowa, NJ, p 690

    Google Scholar 

  118. Wang LK, Hung YT, Shammas NK (2007) Advanced physicochemical treatment technologies. Humana, Totowa, NJ, p 710

    Google Scholar 

  119. Wang LK, Pereira NC, Hung YT, Shammas NK (2009) Biological treatment processes. Humana, Totowa, NJ, 818

    Google Scholar 

  120. US EPA (2001) Controlling disinfection by-products and microbial contaminants in drinking water, EPA/600/R-01/110, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  121. US EPA (1982) Pilot-scale evaluation of biological activated carbon for the removal of THM precursors, EPA-600/S2–82–046. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  122. Shukairy HM, Miltner RJ, Summers RS (1992) Control of disinfection by-products and biodegradable organic matter through biological treatment. Revue Des Sciences De L’Eau 5:1–15

    CAS  Google Scholar 

  123. Shukairy HM, Summers RS, Miltner RJ (1992) The impact of ozonation and biological treatment on disinfection by-products. In: Proceedings of 4th Drinking Water Workshop, Government of Quebec, Montreal, Canada, November

    Google Scholar 

  124. Miltner RJ, Shukairy HM, Summers RS (1992) Disinfection by-product formation and control by ozonation and biotreatment. J Am Water Works Assoc 84:53

    CAS  Google Scholar 

  125. Miltner RJ, Summers RS (1992) A pilot-scale study of biological treatment. In: Proceedings of American Water Works Association Annual Conference, Vancouver, British Columbia, Canada, June

    Google Scholar 

  126. Wang JZ, Summers RS, Miltner RJ (1995) Biofiltration performance: part 1, relationship to biomass. J Am Water Works Assoc 87:55

    CAS  Google Scholar 

  127. Miltner RJ, Summers RS, Wang JZ (1995) Biofiltration performance: part 2, effects of backwashing. J Am Water Works Assoc 87:64

    CAS  Google Scholar 

  128. Findlay RH, King GM, Watling L (1989) Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Microb 55:2888

    CAS  Google Scholar 

  129. Wang JZ, Summers RS (1995) Biomass growth and distribution in drinking water biofilters and its impact on NOM removal. In: Proceedings of American Water Works Association Annual Conference, Anaheim, CA, June

    Google Scholar 

  130. Rittman BE, McCarty PL (1980) Model of steady-state biofilm kinetics. Biotechnol Bioeng 22:2343

    Google Scholar 

  131. Rittman BE, McCarty PL (1980) Evaluation of steady-state biofilm kinetics. Biotechnol Bioeng 22:2359

    Google Scholar 

  132. Dugan NR, Summers RS (1997) A biomass based model to predict substrate utilization in field-scale drinking water biofilters. In: Proceedings of American Water Works Association Annual Conference, Atlanta, GA, June

    Google Scholar 

  133. AWWA (2005) Microfiltration and Ultrafiltration Membranes, Manual of Water Supply Practices M53, American Water Works Association, Denver, CO

    Google Scholar 

  134. Wang LK, Wang MHS, Suozzo T, Dixon RA, Wright TL, Sarraino S (2009) Chemical and biochemical technologies for environmental infrastructure sustainability. National Engineers Week Conference, Albany Marriott, Albany, NY. Feb. 5–6, 2009

    Google Scholar 

  135. Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental biotechnology. Humana, Totowa, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kajitvichyanukul, P., Shammas, N.K., Hung, YT., Wang, L.K., Ananpattarachai, J. (2011). Potable Water Biotechnology, Membrane Filtration and Biofiltration. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics