Skip to main content

CHFR as a Potential Anticancer Target

  • Chapter
Checkpoint Responses in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Developmentā€¢ ((CDD&D))

  • 574 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzler, K. W., Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 1996;87: 159ā€“70.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 2002;13: 755ā€“66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Sudakin, V., Chan, G. K., Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001;154: 925ā€“936.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Tang, Z., Bharadwaj, R., Li, B., Yu, H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 2001;1: 227ā€“237.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Michel, L. S., Liberal, V., Chatterjee, A., et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001;409: 355ā€“359.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Cahill, D. P., da Costa, L. T., Carson-Walter, E. B., et al. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 1999;58: 181ā€“187.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Cahill DP,, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392: 300ā€“303.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Wang Z, Cummins JM, Shen D, et al. Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res 2004;64: 2998ā€“3001.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Cortez D, Elledge SJ. Conducting the mitotic symphony. Nature 2000;406: 354ā€“356.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 2000;406: 430ā€“435.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Georgatos SD, Pyrpasopoulou A, Theodoropoulos PA. Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule-drive deformation of the nuclear membrane. J Cell Sci 1997;110 (Pt 17): 2129ā€“2140.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Salina D, Bodoor K, Eckley DM, et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002;108: 97ā€“107.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Fraschini R, Bilotta D, Lucchini G, Piatti S. Functional characterization of Dma1 and Dma2, the budding yeast homologues of Schizo-saccharomyces pombe Dma1 and human Chfr. Mol Biol Cell 2004;15:3796ā€“3810.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Murone M, Simanis V. The fission yeast dma1 gene is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is compromised. Embo J 1996;15: 6605ā€“6616.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Toyoshima F, Moriguchi T, Wada A, Fukuda M, Nishida E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. Embo J 1998;17: 2728ā€“2735.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Ogi K, Toyota M, Mita H, et al. Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol Ther 2005;4: 773ā€“778.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Satoh A, Toyota M, Itoh F, et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 2003;63: 8606ā€“8613.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Summers MK, Bothos J, Halazonetis TD. The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 2005;24: 2589ā€“2598.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Heliez C, Baricault L, Barboule N, Valette A. Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene 2003;22: 3260ā€“3268.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Porter LA, Cukier IH, Lee JM. Nuclear localization of cyclin B1 regulates DNA damage-induced apoptosis. Blood 2003;101: 1928ā€“1933.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 2003;22: 7101ā€“7107.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Chaturvedi P, Sudakin V, Bobiak ML, et al. Chfr regulates a mitotic stress pathway through its RING-finger domain with ubiquitin ligase activity. Cancer Res 2002;62: 1797ā€“1801.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Kang D, Chen J, Wong J, Fang G.. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol 2002;156: 249ā€“259.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Strebhardt K, and Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006;6: 321ā€“330.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Xie S, Xie B, Lee MY, Dai W. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 2005;24: 277ā€“286.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Takahashi T, Sano B, Nagata T, et al. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci 2003;94:148ā€“152.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Weichert W, Denkert C, Schmidt M, et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 2004;90: 815ā€“821.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Weichert W, Schmidt M, Gekeler V, et al. Polo-like kinase 1 is over-expressed in prostate cancer and linked to higher tumor grades. Prostate 2004;60: 240ā€“245.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Weichert W, Schmidt M, Jacob J, et al. Overexpression of Polo-like kinase 1 is a common and early event in pancreatic cancer. Pancreatology 2005;5: 259ā€“265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 2001;410: 215ā€“220.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 2004;10: 2065ā€“2071.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Gritsko TM, Coppola D, Paciga JE, et al. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 2003;9: 1420ā€“1426.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Li D, Zhu J, Firozi PF, et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 2003;9: 991ā€“997.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003;3: 51ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Yu X, Minter-Dykhouse K, Malureanu L, et al. Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 2005;37: 401ā€“406.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Matsusaka T, and Pines J. Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J Cell Biol 2004;166: 507ā€“516.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001;412: 346ā€“351.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Shtivelman E. Promotion of mitosis by activated protein kinase B after DNA damage involves polo-like kinase 1 and checkpoint protein CHFR. Mol Cancer Res 2003;1: 959ā€“969.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Daniels MJ, Marson A, Venkitaraman AR. PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein. Nat Struct Mol Biol 2004;11: 1114ā€“1121.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Melnick A, and Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93: 3167ā€“3215.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Takahashi Y, Lallemand-Breitenbach V, Zhu J, de The H. PML nuclear bodies and apoptosis. Oncogene 2004;23: 2819ā€“2824.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Mariatos G, Bothos J, Zacharatos P, et al. Inactivating mutations targeting the chfr mitotic checkpoint gene in human lung cancer. Cancer Res 2003;63: 7185ā€“7189.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Toyota M, Sasaki Y, Satoh A, et al. Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A 2003;100: 7818ā€“7823.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Jones PA, Baylin S B. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3: 415ā€“428.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol 2005;32: 521ā€“530.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002;99: 3740ā€“3745.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Corn PG., Summers MK, Fogt F, et al. Frequent hypermethylation of the 5^ā€² CpG island of the mitotic stress checkpoint gene Chfr in colorectal and non-small cell lung cancer. Carcinogenesis 2003;24:47ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Mizuno K, Osada H, Konish, H, et al. Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 2002;21: 2328ā€“2333.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Erson AE, Petty EM. CHFR-associated early G2/M checkpoint defects in breast cancer cells. Mol Carcinog 2004;39: 26ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Tokunaga,E, Oki E, Nishida K, et al. Aberrant hypermethylation of the promoter region of the CHFR gene is rare in primary breast cancer. Breast Cancer Res Treat 2006;97: 199ā€“203.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Cheung HW, Ching YP, Nicholls JM, et al. Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog 2005;43: 237ā€“245.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. van Doorn R, Zoutman WH, Dijkman R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005;23: 3886ā€“3896.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Etoh T, Kanai Y, Ushijima S, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 2004;164: 689ā€“699.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Eads CA, Danenberg KD, Kawakami K, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 1999;59: 2302ā€“2306.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 2001;48: 372ā€“377.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Suzuki M, Toyooka S, Shivapurkar N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. Oncogene 2005;24: 1302ā€“1308.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Kusano M, Toyota M, Suzuki H, et al. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer 2006;106: 1467ā€“1479.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999;96: 8681ā€“8686.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 1999;59: 5438ā€“5442.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A 2000;97: 710ā€“715.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Wynter CV, Walsh MD, Higuchi T, et al. Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer. Gut 2004;53: 573ā€“580.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Minoo P, Baker K, Goswami R, et al. Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut 2006;55:1467ā€“1474.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Bertholon J, Wang Q, Falette N, et al. Chfr inactivation is not associated to chromosomal instability in colon cancers. Oncogene 2003;22:8956ā€“8960.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Brandes JC, van Engeland M, Wouters KA, Weijenberg,MP, Herman JG. CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis 2005;26: 1152ā€“1156.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Cheung HW, Jin DY, Ling MT et al. Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells. Cancer Res 2005;65: 1450ā€“1458.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Wang X, Jin DY, Wong HL, et al. MAD2-induced sensitization to vincristine is associated with mitotic arrest and Raf/Bcl-2 phosphorylation in nasopharyngeal carcinoma cells. Oncogene 2003;22: 109ā€“116.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Koga Y, Kitajima Y, Miyoshi A, et al. The significance of aberrant CHFR methylation for clinical response to microtubule inhibitors in gastric cancer. J Gastroenterol 2006;41: 133ā€“139.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Sun Y. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther 2003;2: 623ā€“629.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Toyota, M., Kashima, L., Tokino, T. (2008). CHFR as a Potential Anticancer Target. In: Dai, W. (eds) Checkpoint Responses in Cancer Therapy. Cancer Drug Discovery and Developmentā€¢. Humana Press. https://doi.org/10.1007/978-1-59745-274-8_7

Download citation

Publish with us

Policies and ethics