Skip to main content

Targeting ATM/ATR in the DNA Damage Checkpoint

  • Chapter
Checkpoint Responses in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Developmentā€¢ ((CDD&D))

  • 606 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434:907ā€“913.

    Google ScholarĀ 

  2. Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434:864ā€“870.

    Google ScholarĀ 

  3. Hecht F, Koler RD, Rigas DA, et al. Leukaemia and lymphocytes in ataxia-telangiectasia. Lancet 2 1966; 1193.

    Google ScholarĀ 

  4. McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep 2004; {5:772ā€“5776.}

    Google ScholarĀ 

  5. Lavin MF, Delia D, Chessa L. ATM and the DNA damage response. Workshop on ataxia-telangiectasia and related syndromes. EMBO Rep 2006; 7:154ā€“160.

    Google ScholarĀ 

  6. Savitsky K, Bar-Shira A, Gilad S, etal. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; {268:1749ā€“1753.}

    Google ScholarĀ 

  7. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 2002; 22:1834ā€“1843.

    Google ScholarĀ 

  8. Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 2003; 278:12207ā€“12213.

    Google ScholarĀ 

  9. Hammond EM, Giaccia AJ. The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair (Amst) 2004; 3:1117ā€“1122.

    Google ScholarĀ 

  10. Hammond EM, Dorie MJ, Giaccia AJ. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 2004; 64:6556ā€“6562.

    Google ScholarĀ 

  11. Hammond EM, Freiberg RA, Giaccia AJ. The roles of Chk1 and Chk2 in hypoxia and reoxygenation. Cancer Lett 2006; 238:161ā€“167.

    Google ScholarĀ 

  12. Gibson SL, Bindra RS, Glazer PM. Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res 2005; 65:10734ā€“10741.

    Google ScholarĀ 

  13. Gibson SL, Bindra RS, Glazer PM. CHK2-dependent phosphorylation of BRCA1 in hypoxia. Radiat Res 2006; 166:646ā€“651.

    Google ScholarĀ 

  14. Purdy A, Su TT. Telomeres: not all breaks are equal. Curr Biol 2004; 14:R613ā€“614.

    Google ScholarĀ 

  15. Slijepcevic P. The role of DNA damage response proteins at telomeresā€“an ā€œintegrativeā€ model. DNA Repair (Amst) 2006; 5:1299ā€“1306.

    Google ScholarĀ 

  16. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007; 448:1068ā€“1071.

    Google ScholarĀ 

  17. Goodarzi AA, Block WD, Lees-Miller SP. The role of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res 2003; 5:393ā€“411.

    Google ScholarĀ 

  18. Bosotti R, Isacchi A, Sonnhammer EL. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 2000; 25:225ā€“227.

    Google ScholarĀ 

  19. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499ā€“506.

    Google ScholarĀ 

  20. Canman CE, Lim DS, Cimprich KA, etal. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281:1677ā€“1679.

    Google ScholarĀ 

  21. Cuadrado M, Martinez-Pastor B, Fernandez-Capetillo O. ā€œATR activation in response to ionizing radiation: still ATM territoryā€. Cell Div 2006; 1:7.

    Google ScholarĀ 

  22. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. Involvement of novel autophosphorylation sites in ATM activation. Embo J 2006; 25:3504ā€“3514.

    Google ScholarĀ 

  23. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308:551ā€“554.

    Google ScholarĀ 

  24. Dupre A, Boyer-Chatenet L, Gautier J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat Struct Mol Biol 2006; 13:451ā€“457.

    Google ScholarĀ 

  25. Pellegrini M, Celeste A, Difilippantonio S, etal. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 2006; 443:222ā€“225.

    Google ScholarĀ 

  26. Goodarzi AA, Jonnalagadda JC, Douglas P, etal. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. Embo J 2004; 23:4451ā€“4461.

    Google ScholarĀ 

  27. Shreeram S, Hee WK, Demidov ON, etal. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J Exp Med 2006; 203:2793ā€“2799.

    Google ScholarĀ 

  28. Shreeram S, Demidov ON, Hee WK, etal. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 2006; 23:757ā€“764.

    Google ScholarĀ 

  29. Jiang X, Sun Y, Chen S, Roy K, Price BD. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J Biol Chem 2006; 281:15741ā€“15746. \pagebreak

    Google ScholarĀ 

  30. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 2005; 102:13182ā€“13187.

    Google ScholarĀ 

  31. Xiao Y, Weaver DT. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 1997; 25:2985ā€“2991.

    Google ScholarĀ 

  32. Luo G, Yao MS, Bender CF, etal. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A 1999; 96:7376ā€“7381.

    Google ScholarĀ 

  33. Zhu J, Petersen S, Tessarollo L, Nussenzweig A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 2001; 11:105ā€“109.

    Google ScholarĀ 

  34. Tauchi H, Kobayashi J, Morishima K, etal. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50[middle dot]hMRE11[middle dot]NBS1 complex DNA repair activity. J Biol Chem 2001; 276:12ā€“15.

    Google ScholarĀ 

  35. Kobayashi J, Tauchi H, Sakamoto S, etal. NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol 2002; 12:1846ā€“1851.

    Google ScholarĀ 

  36. Dā€™Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3:317ā€“327.

    Google ScholarĀ 

  37. Horejsi Z, Falck J, Bakkenist CJ, Kastan MB, Lukas J, Bartek J. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 2004; 23:3122ā€“3127.

    Google ScholarĀ 

  38. Lee JH, Xu B, Lee CH, etal. Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Mol Cancer Res 2003; 1:674ā€“681.

    Google ScholarĀ 

  39. Cerosaletti KM, Concannon P. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 2003; 278:21944ā€“21951.

    Google ScholarĀ 

  40. Difilippantonio S, Celeste A, Fernandez-Capetillo O, etal. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 2005; 7:675ā€“685.

    Google ScholarĀ 

  41. Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol 2005; 70:99ā€“109.

    Google ScholarĀ 

  42. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005; 434:605ā€“611. \pagebreak

    Google ScholarĀ 

  43. You Z, Chahwan C, Bailis J, Hunter T, Russell P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 2005; 25:5363ā€“5379.

    Google ScholarĀ 

  44. Kanu N, Behrens A. ATMIN defines an NBS1-independent pathway of ATM signalling. Embo J 2007; 26:2933ā€“2941.

    Google ScholarĀ 

  45. Kastan MB, Lim DS. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000; 1:179ā€“186.

    Google ScholarĀ 

  46. Zhao S, Weng YC, Yuan SS, etal. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000; 405:473ā€“477.

    Google ScholarĀ 

  47. Wu X, Ranganathan V, Weisman DS, etal. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000; 405:477ā€“482.

    Google ScholarĀ 

  48. Lim DS, Kim ST, Xu B, etal. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404:613ā€“617.

    Google ScholarĀ 

  49. Gatei M, Young D, Cerosaletti KM, etal. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 2000; 25:115ā€“119.

    Google ScholarĀ 

  50. Goldberg M, Stucki M, Falck J, etal. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003; 421:952ā€“956.

    Google ScholarĀ 

  51. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421:961ā€“966.

    Google ScholarĀ 

  52. Lou Z, Minter-Dykhouse K, Franco S, etal. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 2006; 21:187ā€“200.

    Google ScholarĀ 

  53. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273:5858ā€“5868.

    Google ScholarĀ 

  54. Ward IM, Minn K, Jorda KG, Chen J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 2003; 278:19579ā€“19582.

    Google ScholarĀ 

  55. Jowsey P, Morrice NA, Hastie CJ, McLauchlan H, Toth R, Rouse J. Characterisation of the sites of DNA damage-induced 53BP1 phosphorylation catalysed by ATM and ATR. DNA Repair (Amst) 2007.

    Google ScholarĀ 

  56. Celeste A, Difilippantonio S, Difilippantonio MJ, etal. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114:371ā€“383.

    Google ScholarĀ 

  57. Ward IM, Minn K, van Deursen J, Chen J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 2003; 23:2556ā€“2563.

    Google ScholarĀ 

  58. {\tra2Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 2006; 34:1416ā€“1426.}

    Google ScholarĀ 

  59. Xu B, Oā€™Donnell AH, Kim ST, Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002; 62:4588ā€“4591.

    Google ScholarĀ 

  60. Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21:3445ā€“3450.

    Google ScholarĀ 

  61. Li S, Ting NS, Zheng L, etal. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000; 406:210ā€“215.

    Google ScholarĀ 

  62. Renwick A, Thompson D, Seal S, etal. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006; 38:873ā€“875.

    Google ScholarĀ 

  63. Lvine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323ā€“331.

    Google ScholarĀ 

  64. Banin S, Moyal L, Shieh S, etal. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998; 281:1674ā€“1677.

    Google ScholarĀ 

  65. Khanna KK, Keating KE, Kozlov S, etal. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 1998; 20:398ā€“400.

    Google ScholarĀ 

  66. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997; 11:3471ā€“3481. \enlargethispage*{6pt}

    Google ScholarĀ 

  67. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 2000; 97:10389ā€“10394. %\bibitem{0000}%Melchionna R, Chen XB, Blasina A, McGowan CH. Threonine 68 is %required for radiation-induced phosphorylation and activation of %Cds1. Nat Cell Biol 2000; 2:762ā€“765.

    Google ScholarĀ 

  68. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 1999; 96:13777ā€“13782.

    Google ScholarĀ 

  69. Hirao A, Kong YY, Matsuoka S, etal. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000; 287:1824ā€“1827.

    Google ScholarĀ 

  70. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 1999; {96:14973ā€“14977.}

    Google ScholarĀ 

  71. Maya R, Balass M, Kim ST, etal. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001; 15:1067ā€“1077.

    Google ScholarĀ 

  72. Marine JC, Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 2005; 331:750ā€“760.

    Google ScholarĀ 

  73. Stad R, Little NA, Xirodimas DP, etal. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2001; 2:1029ā€“1034.

    Google ScholarĀ 

  74. Chen L, Gilkes DM, Pan Y, Lane WS, Chen J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. Embo J 2005; 24:3411ā€“3422.

    Google ScholarĀ 

  75. Pereg Y, Shkedy D, de Graaf P, etal. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci U S A 2005; 102:5056ā€“5061.

    Google ScholarĀ 

  76. Dornan D, Shimizu H, Mah A, etal. ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 2006; 313:1122ā€“1126.

    Google ScholarĀ 

  77. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410:842ā€“847.

    Google ScholarĀ 

  78. Gatei M, Sloper K, Sorensen C, etal. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 2003; 278:14806ā€“14811.

    Google ScholarĀ 

  79. {\tra2Sorensen CS, Syljuasen RG, Falck J, etal. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3:247ā€“258.}

    Google ScholarĀ 

  80. Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185ā€“191.

    Google ScholarĀ 

  81. Mailand N, Falck J, Lukas C, etal. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288:1425ā€“1429.

    Google ScholarĀ 

  82. Xiao Z, Chen Z, Gunasekera AH, etal. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 2003; 278:21767ā€“21773.

    Google ScholarĀ 

  83. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998; 282:1893ā€“1897.

    Google ScholarĀ 

  84. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 2004; 18:1423ā€“1438.

    Google ScholarĀ 

  85. Habraken Y, Piette J. NF-kappaB activation by double-strand breaks. Biochem Pharmacol 2006; 72:1132ā€“1141.

    Google ScholarĀ 

  86. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S. Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 2006; 311:1141ā€“1146.

    Google ScholarĀ 

  87. Schmit TL, Ahmad N. Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol Cancer Ther 2007; {6:1920ā€“1931.}

    Google ScholarĀ 

  88. Matsuoka S, Ballif BA, Smogorzewska A, etal. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316:1160ā€“1166.

    Google ScholarĀ 

  89. Mu JJ, Wang Y, Luo H, etal. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 2007; 282:17330ā€“17334. \vadjust{\pagebreak}

    Google ScholarĀ 

  90. de Klein A, Muijtjens M, van Os R, etal. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 2000; 10:479ā€“482.

    Google ScholarĀ 

  91. Oā€™Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004; 3:1227ā€“1235.

    Google ScholarĀ 

  92. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science 2001; 294:1713ā€“1716.

    Google ScholarĀ 

  93. Paulsen RD, Cimprich KA. The ATR pathway: Fine-tuning the fork. DNA Repair (Amst) 2007; 6:953ā€“966.

    Google ScholarĀ 

  94. Liu Q, Guntuku S, Cui XS, etal. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14:1448ā€“1459.

    Google ScholarĀ 

  95. Takai H, Tominaga K, Motoyama N, etal. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev 2000; 14:1439ā€“1447.

    Google ScholarĀ 

  96. Zou L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev 2007; 21:879ā€“885.

    Google ScholarĀ 

  97. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542ā€“1548.

    Google ScholarĀ 

  98. Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell 2004; 118:9ā€“17.

    Google ScholarĀ 

  99. Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324ā€“339.

    Google ScholarĀ 

  100. Zou L, Liu D, Elledge SJ. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 2003; 100:13827ā€“13832.

    Google ScholarĀ 

  101. Barr SM, Leung CG, Chang EE, Cimprich KA. ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol 2003; 13:1047ā€“1051.

    Google ScholarĀ 

  102. Binz SK, Sheehan AM, Wold MS. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 2004; 3:1015ā€“1024.

    Google ScholarĀ 

  103. Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, MatsuuraA. ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem Biophys Res Commun 2004; 323:1197ā€“1202.

    Google ScholarĀ 

  104. Kumagai A, Lee J, Yoo HY, Dunphy WG. TopBP1 activates the ATR-ATRIP complex. Cell 2006; 124:943ā€“955.

    Google ScholarĀ 

  105. Hashimoto Y, Tsujimura T, Sugino A, Takisawa H. The phosphorylated C-terminal domain of Xenopus Cut5 directly mediates ATR-dependent activation of Chk1. Genes Cells 2006; 11:993ā€“1007.

    Google ScholarĀ 

  106. Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 2006; 26:6056ā€“6064.

    Google ScholarĀ 

  107. Kumagai A, Dunphy WG. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 2003; 5:161ā€“165.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  108. Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 2003; 4:671ā€“677.

    Google ScholarĀ 

  109. Wang XQ, Redpath JL, Fan ST, Stanbridge EJ. ATR dependent activation of Chk2. J Cell Physiol 2006; 208:613ā€“619.

    Google ScholarĀ 

  110. Adams KE, Medhurst AL, Dart DA, Lakin ND. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 2006; 25:3894ā€“3904.

    Google ScholarĀ 

  111. Jazayeri A, Falck J, Lukas C, etal. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8:37ā€“45.

    Google ScholarĀ 

  112. Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006; 281:9346ā€“9350.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Yoo HY, Kumagai A, Shevchenko A, Dunphy WG. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J Biol Chem 2007; 282:17501ā€“17506.

    Google ScholarĀ 

  114. Stiff T, Walker SA, Cerosaletti K, etal. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. Embo J 2006; 25:5775ā€“5782.

    Google ScholarĀ 

  115. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298:1912ā€“1934.

    Google ScholarĀ 

  116. Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science 2004; 303:1800ā€“1805.

    Google ScholarĀ 

  117. Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer 2001; 8:237ā€“248.

    Google ScholarĀ 

  118. Hickson I, Zhao Y, Richardson CJ, etal. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004; 64:9152ā€“9159. \enlargethispage{12pt}

    Google ScholarĀ 

  119. Blasina A, Price BD, Turenne GA, McGowan CH. Caffeine inhibits the checkpoint kinase ATM. Curr Biol 1999; 9:1135ā€“1138.

    Google ScholarĀ 

  120. Sarkaria JN, Busby EC, Tibbetts RS, etal. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999; 59:4375ā€“4382.

    Google ScholarĀ 

  121. Cariveau MJ, Tang X, Cui XL, Xu B. Characterization of an NBS1 C-Terminal Peptide That Can Inhibit Ataxia Telangiectasia Mutated (ATM)-Mediated DNA Damage Responses and Enhance Radiosensitivity. Mol Pharmacol 2007; 72:320ā€“326.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ackermann, J.M., El-Deiry, W.S. (2008). Targeting ATM/ATR in the DNA Damage Checkpoint. In: Dai, W. (eds) Checkpoint Responses in Cancer Therapy. Cancer Drug Discovery and Developmentā€¢. Humana Press. https://doi.org/10.1007/978-1-59745-274-8_4

Download citation

Publish with us

Policies and ethics