Skip to main content

Targeting the p53/MDM2 Pathway for Cancer Therapy

  • Chapter
Checkpoint Responses in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Developmentā€¢ ((CDD&D))

  • 606 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J. p53: twenty five years understanding the mechanism of genome protection. J Physiol Biochem 2004; 60:287ā€“307.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Bourdon JC, Laurenzi VD, Melino G, Lane D. p53: 25 years of research and more questions to answer. Cell Death Differ 2003; 10:397ā€“399.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Lane D. Anthony Dipple Carcinogenesis Award. p53 from pathway to therapy. Carcinogenesis 2004; 25:1077ā€“1081.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Hofseth LJ, Hussain SP, Harris CC. p53: 25 years after its discovery. Trends Pharmacol Sci 2004; 25:177ā€“181.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Braithwaite AW, Royds JA, Jackson P. The p53 story: layers of complexity. Carcinogenesis 2005; 26:1161ā€“1169.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Lane DP. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Cold Spring Harb Symp Quant Biol 2005; 70:489ā€“497.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Roth JA. Adenovirus p53 gene therapy. Expert Opin Biol Ther 2006; 6:55ā€“61.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18:7621ā€“7636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Lane DP, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev 1990; 4:1ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358:15ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323ā€“331.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Hainaut P, Hernandez T, Robinson A, et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res 1998; 26:205ā€“213.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Hollstein M, Hergenhahn M, Yang Q, Bartsch H, Wang ZQ, Hainaut P. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res 1999; 431:199ā€“209.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Rev Cancer 2001; 1:233ā€“240.

    CASĀ  Google ScholarĀ 

  15. Chompret A. The Li-Fraumeni syndrome. Biochimie 2002; 84:75ā€“82.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Birch JM, Alston RD, McNally RJ, et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 2001; 20:4621ā€“4628.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR. The p53 network. J Biol Chem 1998; 273:1ā€“4.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. El-Deiry WS. Regulation of p53 downstream genes. Semin Cancer Biol 1998; 8:345ā€“357.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Vousden KH. p53. Death star. Cell 2000; 103:691ā€“694.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307ā€“310.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. Eur J Biochem 2001; 268:2784ā€“91.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005; 17:631ā€“636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Erster S, Moll UM. Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 2005; 331:843ā€“850.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4:793ā€“805.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Lozano G, Zambetti GP. What have animal models taught us about the p53 pathway? J Pathol 2005; 205:206ā€“220.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 2005; 576:4ā€“21.

    Google ScholarĀ 

  27. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415:45ā€“53.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Donehower LA. p53: guardian AND suppressor of longevity? Exp Gerontol 2005; 40:7ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, et al. ā€œSuper p53ā€ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. Embo J 2002; 21:6225ā€“6235.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Jin S, Martinek S, Joo WS, et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci U S A 2000; 97:7301ā€“7306.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101:103ā€“113.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Ollmann M, Young LM, Di Como CJ, et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 2000; 101:91ā€“101.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Derry WB, Putzke AP, Rothman JH. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 2001; 294:591ā€“595.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Schumacher B, Hofmann K, Boulton S, Gartner A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 2001; 11:1722ā€“1727.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Yang A, McKeon F. P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol 2000; 1:199ā€“207.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Melino G, Lu X, Gasco M, Crook T, Knight RA. Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 2003; 28:663ā€“670.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2002; 2:605ā€“615.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2:371ā€“386.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Arrowsmith CH, Morin P. New insights into p53 function from structural studies. Oncogene 1996; 12:1379ā€“1385.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Arrowsmith CH. Structure and function in the p53 family. Cell Death Differ 1999; 6:1169ā€“1173.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet 1992; 1:45ā€“49.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J. The N-terminal domain of p53 is natively unfolded. J Mol Biol 2003; 332: 1131ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Bell S, Klein C, MĆ¼ller L, Hansen S, Buchner J. p53 contains large unstructured regions in its native state. J Mol Biol 2002; 322:917ā€“927.

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Okorokov AL, Sherman MB, Plisson C, et al. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. Embo J 2006; 25:5191ā€“5200.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265:346ā€“355.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Zhao K, Chai X, Johnston K, Clements A, Marmorstein R. Crystal Structure of the Mouse p53 Core DNA-binding Domain at 2.7 A Resolution. J Biol Chem 2001; 276:12120ā€“12127.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 2000; 19:1245ā€“56.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Bullock A, Fersht A. Rescuing the function of mutant p53. Nat Rev Cancer 2001; 1:68ā€“76.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 2005; 280:16030ā€“16037.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Cohen PA, Hupp TR, Lane DP, Daniels DA. Biochemical characterization of different conformational states of the Sf9 cell-purified p53His175 mutant protein. FEBS Lett 1999; 463:179ā€“184.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Milner J. Flexibility: the key to p53 function? Trends Biochem Sci 1995; 20:49ā€“51.

    PubMedĀ  CASĀ  Google ScholarĀ 

  52. Ravera MW, Carcamo J, Brissette R, et al. Identification of an allosteric binding site on the transcription factor p53 using a phage-displayed peptide library. Oncogene 1998; 16:1993ā€“1999.

    PubMedĀ  CASĀ  Google ScholarĀ 

  53. Stephen CW, Helminen P, Lane DP. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. J Mol Biol 1995; 248:58ā€“78.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Stephen CW, Lane DP. Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol 1992; 225:577ā€“583.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Hansen S, Hupp TR, Lane DP. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. J Biol Chem 1996; 271:3917ā€“3924.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Wright JD, Noskov SY, Lim C. Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain. Nucleic Acids Res 2002; 30:1563ā€“1574.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci U S A 1999; 96: 8438ā€“8442.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Ang HC, Joerger AC, Mayer S, Fersht AR. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J Biol Chem 2006; 281:21934ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Lane DP, Hupp TR. Drug discovery and p53. Drug Discov Today 2003; 8:347ā€“355.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Edelman J, Nemunaitis J. Adenoviral p53 gene therapy in squamous cell cancer of the head and neck region. Curr Opin Mol Ther 2003; 5:611ā€“617.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Zeimet AG, Riha K, Berger J, et al. New insights into p53 regulation and gene therapy for cancer. Biochem Pharmacol 2000; 60:1153ā€“1163.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Friedler A, Veprintsev DB, Hansson LO, Fersht AR. Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem 2003; 278:24108ā€“24112.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Wieczorek AM, Waterman JL, Waterman MJ, Halazonetis TD. Structure-based rescue of common tumor-derived p53 mutants. Nat Med 1996; 2:1143ā€“1146.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. Embo J 1998; 17:1847ā€“1859.

    PubMedĀ  CASĀ  Google ScholarĀ 

  65. Nikolova PV, Wong KB, DeDecker B, Henckel J, Fersht AR. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. Embo J 2000; 19:370ā€“378.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Nikolova PV, Henckel J, Lane DP, Fersht AR. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A 1998; 95:14675ā€“14680.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. Matsumura I, Ellington AD. In vitro evolution of thermostable p53 variants. Protein Sci 1999; 8:731ā€“740.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Xirodimas DP, Lane DP. Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling. J Biol Chem 1999; 274:28042ā€“28049.

    PubMedĀ  CASĀ  Google ScholarĀ 

  69. Joerger AC, Allen MD, Fersht AR. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J Biol Chem 2004; 279:1291ā€“1296.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Bullock AN, Henckel J, DeDecker BS, et al. Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci U S A 1997; 94:14338ā€“14342.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Brown CR, Hong-Brown LQ, Welch WJ. Correcting temperature-sensitive protein folding defects. J Clin Invest 1997; 99:1432ā€“1444.

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. Maurici D, Monti P, Campomenosi P, et al. Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene 2001; 20:3533ā€“3540.

    PubMedĀ  CASĀ  Google ScholarĀ 

  73. North S, Pluquet O, Maurici D, El Ghissassi F, Hainaut P. Restoration of wild-type conformation and activity of a temperature- sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol Carcinog 2002; 33:181ā€“188.

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Ohnishi K, Ota I, Takahashi A, Ohnishi T. Glycerol restores p53dependent radiosensitivity of human head and neck cancer cells bearing mutant p53. Br J Cancer 2000; 83:1735ā€“1739.

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Ohnishi T, Matsumoto H, Wang X, Takahashi A, Tamamoto T, Ohnishi K. Restoration by glycerol of p53-dependent apoptosis in cells bearing the mutant p53 gene. Int J Radiat Biol 1999; 75:1095ā€“1098.

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Ohnishi T, Ohnishi K, Wang X, Takahashi A, Okaichi K. Restoration of mutant TP53 to normal TP53 function by glycerol as a chemical chaperone. Radiat Res 1999; 151:498ā€“500.

    PubMedĀ  CASĀ  Google ScholarĀ 

  77. Bykov VJ, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer 2003; 39:1828ā€“1834.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science 1999; 286: 2507ā€“2510.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Smith ML, Fornace AJ. Chemotherapeutic targeting of p53. Cancer Biology and Therapy 2002:47ā€“55.

    Google ScholarĀ 

  80. Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, S. E-DW. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biology and Therapy 2002:47ā€“55.

    Google ScholarĀ 

  81. Demma MJ, Wong S, Maxwell E, Dasmahapatra B. CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem 2004; 279:45887ā€“45896.

    PubMedĀ  CASĀ  Google ScholarĀ 

  82. Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M. CP31398, a novel p53-stabilizing agent, induces p53-dependent and p53independent glioma cell death. Oncogene 2003; 22:8233ā€“8245.

    PubMedĀ  CASĀ  Google ScholarĀ 

  83. Luu Y, Bush J, Cheung KJ, Jr., Li G. The p53 stabilizing compound CP31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res 2002; 276:214ā€“222.

    PubMedĀ  CASĀ  Google ScholarĀ 

  84. Luu Y, Li G. The p53-stabilizing compound CP-31398 enhances ultraviolet-B-induced apoptosis in a human melanoma cell line MMRU. J Invest Dermatol 2002; 119:1207ā€“1209.

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Tanner S, Barberis A. CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity. J Negat Results Biomed 2004; 3:5.

    Google ScholarĀ 

  86. Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 2002; 21:2119ā€“2129.

    PubMedĀ  CASĀ  Google ScholarĀ 

  87. Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 2002; 8:282ā€“288.

    PubMedĀ  CASĀ  Google ScholarĀ 

  88. Bykov VJ, Issaeva N, Selivanova G, Wiman KG. Mutant p53dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 2002; 23:2011ā€“2018.

    PubMedĀ  CASĀ  Google ScholarĀ 

  89. Bykov VJ, Zache N, Stridh H, et al. PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 2005; 24:3484ā€“3491.

    PubMedĀ  CASĀ  Google ScholarĀ 

  90. Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 2005; 280:30384ā€“30391.

    PubMedĀ  CASĀ  Google ScholarĀ 

  91. Li Y, Mao Y, Brandt-Rauf PW, Williams AC, Fine RL. Selective induction of apoptosis in mutant p53 premalignant and malignant cancer cells by PRIMA-1 through the c-Jun-NH2-kinase pathway. Mol Cancer Ther 2005; 4:901ā€“909.

    PubMedĀ  CASĀ  Google ScholarĀ 

  92. Myers MC, Wang J, Iera JA, et al. A new family of small molecules to probe the reactivation of mutant p53. J Am Chem Soc 2005; 127: 6152ā€“6153.

    PubMedĀ  CASĀ  Google ScholarĀ 

  93. Gorina S, Pavletich NP. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 1996; 274: 1001ā€“1005.

    PubMedĀ  CASĀ  Google ScholarĀ 

  94. Friedler A, Hansson LO, Veprintsev DB, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci U S A 2002; 99:937ā€“942.

    PubMedĀ  CASĀ  Google ScholarĀ 

  95. Friedler A, DeDecker BS, Freund SM, Blair C, Rudiger S, Fersht AR. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for ā€œmutant conformationā€. J Mol Biol 2004; 336:187ā€“196.

    PubMedĀ  CASĀ  Google ScholarĀ 

  96. Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci U S A 2003; 100:13303ā€“13307.

    PubMedĀ  CASĀ  Google ScholarĀ 

  97. Wang W, Kim SH, El-Deiry WS. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc Natl Acad Sci U S A 2006; 103:11003ā€“11008.

    PubMedĀ  CASĀ  Google ScholarĀ 

  98. Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res 2003; 1:993ā€“1000.

    PubMedĀ  CASĀ  Google ScholarĀ 

  99. Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 2005; 5:3ā€“8.

    PubMedĀ  CASĀ  Google ScholarĀ 

  100. Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene 2000; 242:15ā€“29.

    PubMedĀ  CASĀ  Google ScholarĀ 

  101. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res 1998; 26:3453ā€“3459.

    PubMedĀ  CASĀ  Google ScholarĀ 

  102. Watanabe T, Ichikawa A, Saito H, Hotta T. Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk Lymphoma 1996; 21:391ā€“397, color plates XVI following 5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  103. Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 2005; 5:27ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  104. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res 2003; 1:1001ā€“1008.

    PubMedĀ  CASĀ  Google ScholarĀ 

  105. Juven-Gershon T, Oren M. Mdm2: the ups and downs. Mol Med 1999; 5:71ā€“83.

    PubMedĀ  CASĀ  Google ScholarĀ 

  106. Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999; 55:96ā€“107.

    PubMedĀ  CASĀ  Google ScholarĀ 

  107. Picksley SM, Vojtesek B, Sparks A, Lane DP. Immunochemical analysis of the interaction of p53 with MDM2;ā€“fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 1994; 9: 2523ā€“2529.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Freedman DA, Epstein CB, Roth JC, Levine AJ. A genetic -2 interaction domains. Mol Cell Biol 1993; 13:4107ā€“4114.

    Google ScholarĀ 

  109. Chen J, Marechal V, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 1993; 13:4107ā€“4114.

    PubMedĀ  CASĀ  Google ScholarĀ 

  110. Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274:948ā€“953.

    PubMedĀ  CASĀ  Google ScholarĀ 

  111. Lee H, Mok KH, Muhandiram R, et al. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 2000; 275:29426ā€“29432.

    PubMedĀ  CASĀ  Google ScholarĀ 

  112. Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci U S A 1999; 96:14801ā€“14806.

    PubMedĀ  CASĀ  Google ScholarĀ 

  113. Picksley SM, Darr DA, Mansoor MS, Loadman PM. Current advances in the inhibition of the auto-regulatory interaction between the p53 tumour suppressor protein and MDM2 protein. Expert Opin. Ther. Patents 2001; 11:1825ā€“1835.

    CASĀ  Google ScholarĀ 

  114. Fry DC, Vassilev LT. Targeting protein-protein interactions for cancer therapy. J Mol Med in press.

    Google ScholarĀ 

  115. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 2002; 323:491ā€“501.

    PubMedĀ  CASĀ  Google ScholarĀ 

  116. Stoll R, Renner C, Hansen S, et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 2001; 40:336ā€“144.

    PubMedĀ  CASĀ  Google ScholarĀ 

  117. Schon O, Friedler A, Freund S, Fersht AR. Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J Mol Biol 2004; 336:197ā€“202.

    PubMedĀ  CASĀ  Google ScholarĀ 

  118. McCoy MA, Gesell JJ, Senior MM, Wyss DF. Flexible lid to the p53ā€“binding domain of human Mdm2: implications for p53 regulation. Proc Natl Acad Sci U S A 2003; 100:1645ā€“1648.

    PubMedĀ  CASĀ  Google ScholarĀ 

  119. Jackson MW, Berberich SJ. MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 2000; 20:1001ā€“1007.

    PubMedĀ  CASĀ  Google ScholarĀ 

  120. Stad R, Little NA, Xirodimas DP, et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2001; 2:1029ā€“1034.

    PubMedĀ  CASĀ  Google ScholarĀ 

  121. Parant J, Chavez-Reyes A, Little NA, et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29:92ā€“95.

    PubMedĀ  CASĀ  Google ScholarĀ 

  122. Marine JC, Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 2005; 331:750ā€“760.

    PubMedĀ  CASĀ  Google ScholarĀ 

  123. Bottger V, Bottger A, Garcia-Echeverria C, et al. Comparative study of\break the p53-mdm2 and p53-MDMX interfaces. Oncogene 1999; 18:189ā€“199.

    PubMedĀ  CASĀ  Google ScholarĀ 

  124. Uhrinova S, Uhrin D, Powers H, et al. Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol 2005; 350:587ā€“598.

    PubMedĀ  CASĀ  Google ScholarĀ 

  125. Klein C, Breitenlechner C, Hesse F, et al. Crystal structure of humanized Xenopus MDM2 in complex with a high-affinity peptide antagonist, Proceedings of the 96th Annual Meeting of the American Association for Cancer Research, Anaheim, California, Abstract 4826, April 16ā€“20, 2005, 2005.

    Google ScholarĀ 

  126. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844ā€“848.

    PubMedĀ  CASĀ  Google ScholarĀ 

  127. Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F. NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR 2004; 30:163ā€“173.

    PubMedĀ  CASĀ  Google ScholarĀ 

  128. Blaydes JP, Gire V, Rowson JM, Wynford-Thomas D. Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2. Oncogene 1997; 14:1859ā€“1868.

    PubMedĀ  CASĀ  Google ScholarĀ 

  129. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7:860ā€“869.

    PubMedĀ  CASĀ  Google ScholarĀ 

  130. Geiger T, Husken D, Weiler J, et al. Consequences of the inhibition of Hdm2 expression in human osteosarcoma cells using antisense oligonucleotides. Anticancer Drug Des 2000; 15:423ā€“430.

    PubMedĀ  CASĀ  Google ScholarĀ 

  131. Chen L, Lu W, Agrawal S, Zhou W, Zhang R, Chen J. Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med 1999; 5:21ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  132. Wang H, Nan L, Yu D, Agrawal S, Zhang R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin Cancer Res 2001; 7:3613ā€“3624.

    PubMedĀ  CASĀ  Google ScholarĀ 

  133. Wang H, Zeng X, Oliver P, et al. MDM2 oncogene as a target for cancer therapy: An antisense approach. Int J Oncol 1999; 15:653ā€“660.

    PubMedĀ  CASĀ  Google ScholarĀ 

  134. Zhang Z, Li M, Wang H, Agrawal S, Zhang R. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci U S A 2003; 100:11636ā€“11641.

    PubMedĀ  CASĀ  Google ScholarĀ 

  135. Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23:709ā€“717.

    PubMedĀ  CASĀ  Google ScholarĀ 

  136. Wasylyk C, Salvi R, Argentini M, et al. p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene 1999; 18:1921ā€“1934.

    PubMedĀ  CASĀ  Google ScholarĀ 

  137. Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, Fabbro D. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 2000; 299: 245ā€“253.

    Google ScholarĀ 

  138. Garcia-Echeverria C, Furet P, Chene P. Coupling of the antennapedia third helix to a potent antagonist of the p53/hdm2 protein-protein interaction. Bioorg Med Chem Lett 2001; 11:2161ā€“2164.

    PubMedĀ  CASĀ  Google ScholarĀ 

  139. Chene P, Fuchs J, Carena I, Furet P, Garcia-Echeverria C. Study of the cytotoxic effect of a peptidic inhibitor of the p53-hdm2 interaction in tumor cells. FEBS Lett 2002; 529:293ā€“2937.

    PubMedĀ  CASĀ  Google ScholarĀ 

  140. Harbour JW, Worley L, Ma D, Cohen M. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol 2002; 120:1341ā€“1346.

    PubMedĀ  CASĀ  Google ScholarĀ 

  141. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203ā€“206.

    PubMedĀ  CASĀ  Google ScholarĀ 

  142. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378:206ā€“208.

    PubMedĀ  CASĀ  Google ScholarĀ 

  143. Mendrysa SM, McElwee MK, Michalowski J, Oā€™Leary KA, Young KM, Perry ME. mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 2003; 23: 462ā€“472.

    PubMedĀ  CASĀ  Google ScholarĀ 

  144. Lane DP, Hupp TR. Drug discovery and p53. Drug Discov Today 2003; 8:347ā€“355.

    PubMedĀ  CASĀ  Google ScholarĀ 

  145. Chene P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 2003; 3:102ā€“109.

    PubMedĀ  CASĀ  Google ScholarĀ 

  146. Bottger V, Bottger A, Howard SF, et al. Identification of novel mdm2 binding peptides by phage display. Oncogene 1996; 13:2141ā€“2147.

    PubMedĀ  CASĀ  Google ScholarĀ 

  147. Bottger A, Bottger V, Garcia-Echeverria C, et al. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 1997; 269:744ā€“756.

    PubMedĀ  CASĀ  Google ScholarĀ 

  148. Garcia-Echeverria C, Chene P, Blommers MJ, Furet P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 2000; 43:3205ā€“3208.

    PubMedĀ  CASĀ  Google ScholarĀ 

  149. Sakurai K, Schubert C, Kahne D. Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. J Am Chem Soc 2006; 128:11000ā€“11001.

    PubMedĀ  CASĀ  Google ScholarĀ 

  150. Massova I, Kollmann PA. Computational Alanine Scanning To Probe Protein-Protein Interactions: A Novel Approach To Evaluate Binding Free Energies. J. Am. Chem. Soc. 1999; 121:8133ā€“8143.

    CASĀ  Google ScholarĀ 

  151. Galatin PS, Abraham DJ. QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction. Proteins 2001; 45:169ā€“175.

    PubMedĀ  CASĀ  Google ScholarĀ 

  152. Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci U S A 1996; 93:13ā€“20.

    PubMedĀ  CASĀ  Google ScholarĀ 

  153. Stites WE. Protein-Protein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis. Chem Rev 1997; 97: 1233ā€“1250.

    PubMedĀ  CASĀ  Google ScholarĀ 

  154. Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004; 3:301ā€“317.

    PubMedĀ  CASĀ  Google ScholarĀ 

  155. Toogood PL. Inhibition of protein-protein association by small molecules: approaches and progress. J Med Chem 2002; 45:1543ā€“1558.

    PubMedĀ  CASĀ  Google ScholarĀ 

  156. Cochran AG. Antagonists of protein-protein interactions. Chemistry & Biology 2000; 7:R85ā€“94.

    CASĀ  Google ScholarĀ 

  157. Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2005; 44:4130ā€“4163.

    PubMedĀ  CASĀ  Google ScholarĀ 

  158. Lai Z, Auger KR, Manubay CM, Copeland RA. Thermodynamics of p53 binding to hdm2(1ā€“126): effects of phosphorylation and p53 peptide length. Arch Biochem Biophys 2000; 381:278ā€“284.

    PubMedĀ  CASĀ  Google ScholarĀ 

  159. Kane SA, Fleener CA, Zhang YS, Davis LJ, Musselman AL, Huang PS. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Anal Biochem 2000; 278:29ā€“38.

    PubMedĀ  CASĀ  Google ScholarĀ 

  160. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK. A Fluorescence Polarization Assay for the Identification of Inhibitors of the p53-DM2 Protein-Protein Interaction. Anal Biochem 2002; 300:230ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  161. Zhang R, Mayhood T, Lipari P, et al. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction. Anal Biochem 2004; 331:138ā€“146.

    PubMedĀ  CASĀ  Google ScholarĀ 

  162. Dā€™Silva L, Ozdowy P, Krajewski M, Rothweiler U, Singh M, Holak TA. Monitoring the effects of antagonists on protein-protein interactions with NMR spectroscopy. J Am Chem Soc 2005; 127:13220ā€“13226.

    PubMedĀ  CASĀ  Google ScholarĀ 

  163. Kumar SK, Hager E, Pettit C, Gurulingappa H, Davidson NE, Khan SR. Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J Med Chem 2003; 46:2813ā€“28135.

    PubMedĀ  CASĀ  Google ScholarĀ 

  164. Zhao J, Wang M, Chen J, et al. The initial evaluation of non-peptidic small-moleculre HDM2 inhibitors based on p53-HDM2 complex structure. Cancer Letters 2002; 183:69ā€“77.

    PubMedĀ  CASĀ  Google ScholarĀ 

  165. Duncan SJ, Gruschow S, Williams DH, et al. Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 2001; 123:554ā€“560.

    PubMedĀ  CASĀ  Google ScholarĀ 

  166. Duncan SJ, Cooper MA, Williams DH. Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem Commun (Camb) 2003: 316ā€“317.

    Google ScholarĀ 

  167. Desai P, Pfeiffer SS, Boger DL. Synthesis of the chlorofusin cyclic peptide: assignment of the asparagine stereochemistry. Org Lett 2003; 5:5047ā€“5050.

    PubMedĀ  CASĀ  Google ScholarĀ 

  168. Malkinson JP, Zloh M, Kadom M, Errington R, Smith PJ, Searcey M. Solid-phase synthesis of the cyclic peptide portion of chlorofusin, an inhibitor of p53-MDM2 interactions. Org Lett 2003; 5:5051ā€“5054.

    PubMedĀ  CASĀ  Google ScholarĀ 

  169. Duncan SJ, Williams DH, Ainsworth M, Martin S, Ford R, Wrigley SK. On the biosynthesis of an inhibitor of the p53/MDM2 interaction. Tetrahedron Letters 2002; 43:1075ā€“1078.

    CASĀ  Google ScholarĀ 

  170. Fry DC, Graves BJ, Vassilev LT. Exploiting protein-protein interactions to design an activator of p53. Protein-Protein Interactions: A Molecular Cloning Manual. New York in press: Cold Spring Harbor Laboratory Press.

    Google ScholarĀ 

  171. Fry DC, Graves BJ, Vassilev LT. Development of E3-substrate (MDM2p53) binding inhibitors: structural aspects. Meth Enzymol in press.

    Google ScholarĀ 

  172. Vassilev LT. Small-Molecule Antagonists of p53-MDM2 Binding: Research Tools and Potential Therapeutics. Cell Cycle 2004; 3:419ā€“421.

    PubMedĀ  CASĀ  Google ScholarĀ 

  173. Vassilev LT. p53 Activation by small molecules: application in oncology. J Med Chem 2005; 48:4491ā€“4499.

    PubMedĀ  CASĀ  Google ScholarĀ 

  174. Thompson T, Tovar C, Yang H, et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 2004; 279:53015ā€“530122.

    PubMedĀ  CASĀ  Google ScholarĀ 

  175. Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A 2006; 103:1888ā€“1893.

    PubMedĀ  CASĀ  Google ScholarĀ 

  176. Harris CC. Protein-protein interactions for cancer therapy. Proc Natl Acad Sci U S A 2006; 103:1659ā€“1660.

    PubMedĀ  CASĀ  Google ScholarĀ 

  177. Stuhmer T, Chatterjee M, Hildebrandt M, et al. Non-genotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005; 106:3609ā€“3617.

    PubMedĀ  Google ScholarĀ 

  178. Kojima K, Konopleva M, Samudio IJ, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106:3150ā€“3159.

    PubMedĀ  CASĀ  Google ScholarĀ 

  179. Coll-Mulet L, Iglesias-Serret D, Santidrian AF, et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006; 107:4109ā€“4114.

    PubMedĀ  CASĀ  Google ScholarĀ 

  180. Secchiero P, Barbarotto E, Tiribelli M, et al. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006; 107:4122ā€“4129.

    PubMedĀ  CASĀ  Google ScholarĀ 

  181. Brummelkamp TR, Fabius AW, Mullenders J, et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2006; 2:202ā€“206.

    PubMedĀ  CASĀ  Google ScholarĀ 

  182. Fotouhi N, Graves B. Small molecule inhibitors of p53/MDM2 interaction. Curr Top Med Chem 2005; 5:159ā€“165.

    PubMedĀ  CASĀ  Google ScholarĀ 

  183. Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med:, in press.

    Google ScholarĀ 

  184. Grasberger BL, Lu T, Schubert C, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 2005; 48:909ā€“912.

    PubMedĀ  CASĀ  Google ScholarĀ 

  185. Parks DJ, Lafrance LV, Calvo RR, et al. 1,4-Benzodiazepine-2,5diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. Bioorg Med Chem Lett 2005; 15:765ā€“770.

    PubMedĀ  CASĀ  Google ScholarĀ 

  186. Raboisson P, Marugan JJ, Schubert C, et al. Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 2005; 15:1857ā€“1861.

    PubMedĀ  CASĀ  Google ScholarĀ 

  187. Koblish HK, Zhao S, Franks CF, et al. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 2006; 5:160ā€“169.

    PubMedĀ  CASĀ  Google ScholarĀ 

  188. Leonard K, Marugan JJ, Raboisson P, et al. Novel 1,4-benzodiazepine2,5-diones as Hdm2 antagonists with improved cellular activity. Bioorg Med Chem Lett 2006; 16:3463ā€“3468.

    PubMedĀ  CASĀ  Google ScholarĀ 

  189. Marugan JJ, Leonard K, Raboisson P, et al. Enantiomerically pure 1, 4-benzodiazepine-2,5-diones as Hdm2 antagonists. Bioorg Med Chem Lett 2006; 16:3115ā€“3120.

    PubMedĀ  CASĀ  Google ScholarĀ 

  190. Parks DJ, LaFrance LV, Calvo RR, et al. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg Med Chem Lett 2006; 16:3310ā€“3314.

    PubMedĀ  CASĀ  Google ScholarĀ 

  191. Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005; 127:10130ā€“10131.

    PubMedĀ  CASĀ  Google ScholarĀ 

  192. Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2006; 49:3432ā€“3435.

    PubMedĀ  CASĀ  Google ScholarĀ 

  193. Lu F, Chi SW, Kim DH, Han KH, Kuntz ID, Guy RK. Proteomimetic libraries: design, synthesis, and evaluation of p53-MDM2 interaction inhibitors. J Comb Chem 2006; 8:315ā€“325.

    PubMedĀ  CASĀ  Google ScholarĀ 

  194. Lu Y, Nikolovska-Coleska Z, Fang X, et al. Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 2006; 49:3759ā€“3762.

    PubMedĀ  CASĀ  Google ScholarĀ 

  195. Hardcastle IR, Ahmed SU, Atkins H, et al. Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. Bioorg Med Chem Lett 2005; 15:1515ā€“1520.

    PubMedĀ  CASĀ  Google ScholarĀ 

  196. Hardcastle IR, Ahmed SU, Atkins H, et al. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. J Med Chem 2006; 49:6209ā€“6721.

    PubMedĀ  CASĀ  Google ScholarĀ 

  197. Yin H, Lee GI, Park HS, et al. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 2005; 44:2704ā€“2707.

    PubMedĀ  CASĀ  Google ScholarĀ 

  198. Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J. p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 2005; 4:1019ā€“1025.

    PubMedĀ  CASĀ  Google ScholarĀ 

  199. Fasan R, Dias RL, Moehle K, et al. Using a beta-hairpin to mimic an alpha-helix: cyclic peptidomimetic inhibitors of the p53-HDM2 protein-protein interaction. Angew Chem Int Ed Engl 2004; 43:2109ā€“2112.

    PubMedĀ  CASĀ  Google ScholarĀ 

  200. Kritzer JA, Hodsdon ME, Schepartz A. Solution structure of a beta-peptide ligand for hDM2. J Am Chem Soc 2005; 127:4118ā€“4119.

    PubMedĀ  CASĀ  Google ScholarĀ 

  201. Kritzer JA, Lear JD, Hodsdon ME, Schepartz A. Helical beta-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 2004; 126:9468ā€“9469.

    PubMedĀ  CASĀ  Google ScholarĀ 

  202. Sakurai K, Chung HS, Kahne D. Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 2004; 126:16288ā€“16289.

    PubMedĀ  CASĀ  Google ScholarĀ 

  203. Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10:1321ā€“1328.

    PubMedĀ  CASĀ  Google ScholarĀ 

  204. Krajewski M, Ozdowy P, Dā€™Silva L, Rothweiler U, Holak TA. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat Med 2005; 11:1135ā€“1136; author reply 1136ā€“1137.

    PubMedĀ  CASĀ  Google ScholarĀ 

  205. Klein C, Vassilev LT. Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 2004; 91:1415ā€“1419.

    PubMedĀ  CASĀ  Google ScholarĀ 

  206. Leng RP, Lin Y, Ma W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112:779ā€“791.

    PubMedĀ  CASĀ  Google ScholarĀ 

  207. Dornan D, Wertz I, Shimizu H, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429:86ā€“92.

    PubMedĀ  CASĀ  Google ScholarĀ 

  208. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121: 1071ā€“1083.

    Google ScholarĀ 

  209. Lai Z, Ferry KV, Diamond MA, et al. Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization. J Biol Chem 2001; 276:31357ā€“31367.

    PubMedĀ  CASĀ  Google ScholarĀ 

  210. Yang Y, Ludwig RL, Jensen JP, et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7:547ā€“559.

    PubMedĀ  CASĀ  Google ScholarĀ 

  211. Davydov IV, Woods D, Safiran YJ, et al. Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2. J Biomol Screen 2004; 9:695ā€“703.

    PubMedĀ  CASĀ  Google ScholarĀ 

  212. Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res 2001; 61:4301ā€“4305.

    PubMedĀ  CASĀ  Google ScholarĀ 

  213. Blagosklonny MV. Sequential activation and inactivation of G2 checkpoints for selective killing of p53-deficient cells by microtubule-active drugs. Oncogene 2002; 21:6249ā€“6254.

    PubMedĀ  CASĀ  Google ScholarĀ 

  214. Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest 2000; 105:533ā€“539.

    PubMedĀ  CASĀ  Google ScholarĀ 

  215. Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005; 65:1918ā€“1924.

    PubMedĀ  CASĀ  Google ScholarĀ 

  216. Lakkaraju A, Dubinsky JM, Low WC, Rahman YE. Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem 2001; 276:32000ā€“32007.

    PubMedĀ  CASĀ  Google ScholarĀ 

  217. Sellers WR, Fisher DE. Apoptosis and cancer drug targeting. J Clin Invest 1999; 104:1655ā€“1661.

    PubMedĀ  CASĀ  Google ScholarĀ 

  218. Blagosklonny MV. P53: an ubiquitous target of anticancer drugs. Int J Cancer 2002; 98:161ā€“166.

    PubMedĀ  CASĀ  Google ScholarĀ 

  219. Reed JC. Apoptosis-based therapies. Nat Rev Drug Design 2002; 1: 111ā€“121.

    CASĀ  Google ScholarĀ 

  220. Pruschy M, Rocha S, Zaugg K, et al. Key targets for the execution of radiation-induced tumor cell apoptosis: the role of p53 and caspases. Int J Radiat Oncol Biol Phys 2001; 49:561ā€“567.

    PubMedĀ  CASĀ  Google ScholarĀ 

  221. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999; 59:1391ā€“1399.

    PubMedĀ  CASĀ  Google ScholarĀ 

  222. Pirollo KF, Bouker KB, Chang EH. Does p53 status influence tumor response to anticancer therapies? Anticancer Drugs 2000; 11:419ā€“432.

    PubMedĀ  CASĀ  Google ScholarĀ 

  223. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108:153ā€“164.

    PubMedĀ  CASĀ  Google ScholarĀ 

  224. Komarova EA, Gudkov AV. Could p53 be a target for therapeutic suppression? Semin Cancer Biol 1998; 8:389ā€“400.

    PubMedĀ  CASĀ  Google ScholarĀ 

  225. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285:1733ā€“1737.

    PubMedĀ  CASĀ  Google ScholarĀ 

  226. Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 2001; 62:657ā€“667.

    PubMedĀ  CASĀ  Google ScholarĀ 

  227. Komarova EA, Gudkov AV. Suppression of p53: a new approach to overcome side effects of antitumor therapy. Biochemistry (Mosc) 2000; 65:41ā€“48.

    CASĀ  Google ScholarĀ 

  228. Wiesmuller L. The tumor suppressor p53 in the center of a strategy aiming at the alleviation of side effects in cancer therapies. Angewandte Chemie-International Edition 2000; 39:1768.

    CASĀ  Google ScholarĀ 

  229. Bassi L, Carloni M, Fonti E, Palma de la Pena N, Meschini R, Palitti F. Pifithrin-alpha, an inhibitor of p53, enhances the genetic instability induced by etoposide (VP16) in human lymphoblastoid cells treated in vitro. Mutat Res 2002; 499:163ā€“176.

    PubMedĀ  CASĀ  Google ScholarĀ 

  230. Culmsee C, Zhu X, Yu QS, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 2001; 77:220ā€“228.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  231. Gudkov A, Komarov P, Komarova E. p53 inhibitors and therapeutic use of the same. Patentschrift 2000:PCT/US00/02104 beruhend auf WO00/44364.

    Google ScholarĀ 

  232. Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726ā€“736.

    PubMedĀ  CASĀ  Google ScholarĀ 

  233. Strom E, Sathe S, Komarov PG, et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2006; 2:474ā€“479.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klein, C., Vassilev, L.T. (2008). Targeting the p53/MDM2 Pathway for Cancer Therapy. In: Dai, W. (eds) Checkpoint Responses in Cancer Therapy. Cancer Drug Discovery and Developmentā€¢. Humana Press. https://doi.org/10.1007/978-1-59745-274-8_2

Download citation

Publish with us

Policies and ethics