Skip to main content

Targeting the Spindle Checkpoint in Cancer Chemotherapy

  • Chapter
Checkpoint Responses in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Developmentā€¢ ((CDD&D))

  • 600 Accesses

Abstract

Proper chromosome segregation during mitosis is critical for cells to inherit the correct number of chromosomes and maintain genetic stability. The spindle checkpoint is a cell-cycle surveillance mechanism that prevents premature sister-chromatid separation and ensures the fidelity of chromosome segregation. A defective spindle checkpoint results in aneuploidy and contributes to tumorigenesis. On the other hand, many tumor cells still exhibit a partially functional spindle checkpoint and undergo prolonged mitotic arrest followed by apoptosis when treated with the antimitotic class of anticancer drugs, such as paclitaxel (Taxol). Recent studies have shown that a more complete inactivation of the spindle checkpoint reduces the efficacy of these drugs in eliciting apoptosis in cultured cancer cells. Therefore, quantitative differences in the strength of the spindle checkpoint may influence the efficacy of antimitotic drugs in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 2003;112:407ā€“421.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Nasmyth K. Segregating sister genomes: the molecular biology of chromosome separation. Science 2002;297(5581):559ā€“565.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 2004;23(11):2016ā€“2027.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005;5(10):773ā€“785.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 2002;3(10):731ā€“741.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Yu H, Tang Z. Bub1 multitasking in mitosis. Cell Cycle 2005;4(2):262ā€“265.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006;7(9):644ā€“656.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Yu H. Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol 2002;14(6):706ā€“714.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Pinsky BA, Biggins S. The spindle checkpoint: tension versus attachment. Trends Cell Biol 2005;15(9):486ā€“493.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Andrews PD. Aurora kinases: shining lights on the therapeutic horizon? Oncogene 2005;24(32):5005ā€“5015.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A, Lorca T. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 2004;15(10):4584ā€“4596.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Chen RH. BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 2002;158(3):487ā€“496.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Sharp-Baker H, Chen RH. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 2001;153(6):1239ā€“1250.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 2000;150(6):1233ā€“1250.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Shah JV, Botvinick E, Bonday Z, Furnari F, Berns M, Cleveland DW. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr Biol 2004;14(11):942ā€“952.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol 2004;14(11):953ā€“964.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Tang Z, Bharadwaj R, Li B, Yu H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 2001;1(2):227ā€“237.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 2002;13(3):755ā€“766.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001;154(5):925ā€“936.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Tang Z, Shu H, Oncel D, Chen S, Yu H. Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell 2004;16(3):387ā€“397.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Howell BJ, McEwen BF, Canman JC, et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 2001;155(7):1159ā€“1172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Starr DA, Williams BC, Hays TS, Goldberg ML. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998;142(3):763ā€“774.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 2005;15(9):856ā€“861.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Habu T, Kim SH, Weinstein J, Matsumoto T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. Embo J 2002;21(23):6419ā€“6428.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H. Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. Embo J 2004;23(15):3133ā€“3143.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Mapelli M, Filipp FV, Rancati G, et al. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. Embo J 2006;25(6):1273ā€“1284.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Yu H. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J Cell Biol 2006;173(2):153ā€“157.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000;101(6):635ā€“645.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A 2005;102(32):11296ā€“11301.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001;409(6818):355ā€“359.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Kalitsis P, Earle E, Fowler KJ, Choo KH. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 2000;14(18):2277ā€“2282.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, van Deursen JM. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 2003;160(3):341ā€“353.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Wang Q, Liu T, Fang Y, et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood 2004;103(4):1278ā€“1285.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 2004;64(2):440ā€“445.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Baker DJ, Jeganathan KB, Cameron JD, et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 2004;36(7):744ā€“749.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Rao CV, Yang YM, Swamy MV, et al. Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci U S A 2005;102(12):4365ā€“4370.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Lee H, Trainer AH, Friedman LS, et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 1999;4(1):1ā€“10.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Hanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004;36(11):1159ā€“1161.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Matsuura S, Matsumoto Y, Morishima K, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A 2006;140(4):358ā€“367.

    PubMedĀ  Google ScholarĀ 

  40. Matsuura S, Ito E, Tauchi H, Komatsu K, Ikeuchi T, Kajii T. Chromosomal instability syndrome of total premature chromatid separation with mosaic variegated aneuploidy is defective in mitotic-spindle checkpoint. Am J Hum Genet 2000;67(2):483ā€“486.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Cahill DP, Lengauer C, Yu J, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998;392(6673):300ā€“303.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Tsukasaki K, Miller CW, Greenspun E, et al. Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene 2001;20(25):3301ā€“3305.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Wang RH, Yu H, Deng CX. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci U S A 2004;101(49):17108ā€“17113.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle 2006;5(9):1001ā€“1007.

    Google ScholarĀ 

  45. Chun AC, Jin DY. Transcriptional regulation of mitotic checkpoint gene MAD1 by p53. J Biol Chem 2003;278(39):37439ā€“37450.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Iwanaga Y, Jeang KT. Expression of mitotic spindle checkpoint protein hsMAD1 correlates with cellular proliferation and is activated by a gain-of-function p53 mutant. Cancer Res 2002;62(9):2618ā€“2624.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998;93(1):81ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Gupta A, Inaba S, Wong OK, Fang G, Liu J. Breast cancer-specific gene 1 interacts with the mitotic checkpoint kinase BubR1. Oncogene 2003;22(48):7593ā€“7599.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Hernando E, Nahle Z, Juan G, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 2004;430(7001):797ā€“802.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002;16(2):245ā€“256.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Hurwitz CA, Relling MV, Weitman SD, et al. Phase I trial of paclitaxel in children with refractory solid tumors: a Pediatric Oncology Group Study. J Clin Oncol 1993;11(12):2324ā€“2329.

    PubMedĀ  CASĀ  Google ScholarĀ 

  52. Gianni L, Kearns CM, Giani A, et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995;13(1):180ā€“190.

    PubMedĀ  CASĀ  Google ScholarĀ 

  53. Sonnichsen DS, Hurwitz CA, Pratt CB, Shuster JJ, Relling MV. Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J Clin Oncol 1994;12(3):532ā€“538.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Huizing MT, Keung AC, Rosing H, et al. Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 1993;11(11):2127ā€“2135.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Jordan MA, Toso RJ, Thrower D, Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 1993;90(20):9552ā€“9556.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Brito DA, Rieder CL. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 2006;16(12):1194ā€“1200.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Uetake Y, Sluder G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a ā€œtetraploidy checkpointā€. J Cell Biol 2004;165(5):609ā€“615.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Taylor SS, McKeon F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 1997;89(5):727ā€“735.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Shin HJ, Baek KH, Jeon AH, et al. Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell 2003;4(6):483ā€“497.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Sudo T, Nitta M, Saya H, Ueno NT. Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 2004;64(7):2502ā€“2508.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T. Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol 2003;163(3):1109ā€“1116.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Tao W, South VJ, Zhang Y, et al. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell 2005;8(1):49ā€“59.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Bhonde MR, Hanski ML, Budczies J, et al. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem 2006;281(13):8675ā€“8685.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kang, J., Yu, H. (2008). Targeting the Spindle Checkpoint in Cancer Chemotherapy. In: Dai, W. (eds) Checkpoint Responses in Cancer Therapy. Cancer Drug Discovery and Developmentā€¢. Humana Press. https://doi.org/10.1007/978-1-59745-274-8_10

Download citation

Publish with us

Policies and ethics