Skip to main content

Umbilical Cord Blood Stem Cells for Myocardial Regeneration and Angiogenesis

  • Chapter

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Limitations of revascularization for ischemic heart disease include incompleteness of revascularization, even for surgical revascularization, especially for calcified lesions in distal segments of small-caliber vessels. Revascularization has not been shown to regenerate functional, viable myocardium from scarred and infarcted myocardium. Previous alternatives to revascularization such as transmyocardial laser revascularization, gene therapy, and orthotopic heart transplantation also have many disadvantages that limit their use in high-risk patients such as those with recent myocardial infarction and advanced heart failure.

Although preclinical and early clinical studies in cardiovascular disease of adult-derived stem cells have shown promise, many limitations remain. Umbilical cord blood (UCB)-derived stem cells have several advantages over adult stem cells, including ease of harvesting and storage and decreased risk for immune intolerance and transmission of infectious agents. Here we summarize our laboratory’s preclinical in vitro and in vivo studies of UCB-derived stem cells: their phenotypic characterization, ability for neovascularization in a murine femoral artery ligation hindlimb ischemia model, reduced likelihood of stimulating an immune response, and interaction with stem cells of other origins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fredrickson JK. Umbilical cord blood stem cells: my body makes them, but do I get to keep them? Analysis of the FDA proposed regulations and the impact on individual constitutional property rights. J Contemp Health Law Policy 1998;14:477–502.

    PubMed  CAS  Google Scholar 

  2. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998;339:1565–1577.

    Article  PubMed  CAS  Google Scholar 

  3. Laughlin MJ, Barker, Bambach B, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001;344:1815–1822.

    Article  PubMed  CAS  Google Scholar 

  4. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000;95:3106–3112.

    PubMed  CAS  Google Scholar 

  5. Pierelli L, Bonanno G, Rutella S, Marone M, Scambia, Leone G. CD105 (endoglin) expression on hematopoietic stem/progenitor cells. Leuk. Lymphoma 2001;42:1195–1206.

    Article  PubMed  CAS  Google Scholar 

  6. Barry FP, Boynton RE, Haynesworth S, Murphy M, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 1999;265:134–139.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng T, Scadden DT. Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol 2002;75:460–465.

    Article  PubMed  CAS  Google Scholar 

  8. Wang Z, Miura N, Bonelli A, et al. Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 2002;99:2740–2747.

    Article  PubMed  CAS  Google Scholar 

  9. Fleming E, Jr, Haynesworth SE, Cassiede P, Baber MA, Caplan AI. Monoclonal antibody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Dev Dyn 1998;212:119–132.

    Article  PubMed  CAS  Google Scholar 

  10. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone 1992;13:81–88.

    Article  PubMed  CAS  Google Scholar 

  11. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996;166:585–592.

    Article  PubMed  CAS  Google Scholar 

  12. Hartlapp I, Abe R, Saeed RW, et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 2001;15:2215–2224.

    Article  PubMed  CAS  Google Scholar 

  13. Alessandri G, Girelli M, Taccagni G, et al. Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Lab Invest 2001;81:875–885.

    PubMed  CAS  Google Scholar 

  14. Ankoma-Sey V, Matli M, Chang KB, et al. Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene 1998;17:115–121.

    Article  PubMed  CAS  Google Scholar 

  15. Henning RJ, Abu-Ali H, Balis JU, Morgan MB, Willing AE, Sanberg PR. Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 2004;13:729–739.

    PubMed  Google Scholar 

  16. Leor J, Guetta E, Feinberg MS, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells 2005

    Google Scholar 

  17. Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 2005;112:196–104.

    Article  Google Scholar 

  18. Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005;66:45–54.

    Article  PubMed  CAS  Google Scholar 

  19. Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun 2005;327:609–614.

    Article  PubMed  CAS  Google Scholar 

  20. Askari A, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor-1 on stem cell homing and tissue regeneration in ischemic cardiomyopathy. 2003;697–703.

    Google Scholar 

  21. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110:3300–3305.

    Article  PubMed  Google Scholar 

  22. Mal R, Deluca K, Liebmann-Vinson A, et al. Intravenous infusion of human umbilical cord stem cells one day after myocardial infarction leads to neovascularization and improves cardiac function. Proc Miami Nat Biotechnol Winter Symp 2006;17:(abstr).

    Google Scholar 

  23. Chen HK, Hung HF, Shyu KG, et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest 2005;35:677–686.

    Article  PubMed  CAS  Google Scholar 

  24. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362–367.

    PubMed  CAS  Google Scholar 

  25. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    PubMed  CAS  Google Scholar 

  26. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964–3972.

    Article  PubMed  CAS  Google Scholar 

  27. Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 2001;97:3075–3085.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bhakta, S., Laughlin, M.J. (2007). Umbilical Cord Blood Stem Cells for Myocardial Regeneration and Angiogenesis. In: Penn, M.S. (eds) Stem Cells And Myocardial Regeneration. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-272-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-272-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-664-1

  • Online ISBN: 978-1-59745-272-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics