Skip to main content

Use of Skeletal Myoblasts for the Treatment of Chronic Heart Failure

  • Chapter
Stem Cells And Myocardial Regeneration

Abstract

Recent investigation of cell transplantation has provided new hope for the treatment of heart failure, a historically incurable disease. Although multiple cell types and delivery techniques have been employed, no clear consensus has been reached as to the superiority of any single method. Skeletal myoblasts have several unique properties that make them an attractive cell type for use in the clinical arena. Most importantly they are autologous, readily available, and easily harvested and expanded ex vivo. Furthermore, they can be modified genetically to optimize engraftment. Their successful use in animal studies has justified several clinical trials in the United States and Europe. Autologous engraftment of skeletal myoblasts in patients has been associated with modest improvements in cardiac function. The mechanisms by which these cells might exert their positive effect remain in question, but a direct contribution to contractile function seems unlikely. Enthusiasm for these cells has further been tempered by an apparent arrhythmogenic risk. This chapter explores the use of skeletal myoblasts for the treatment of heart failure. The preclinical and clinical data published to date are reviewed. The ultimate role of these cells in the clinical armamentarium of heart failure treatments will depend on the results of ongoing studies. Regardless of their future, the use of skeletal myoblasts has provided important insights in the burgeoning field of cell therapy for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis during hypertrophy in adult mice. Am J Physiol 1994;266:H1439–1445.

    PubMed  CAS  Google Scholar 

  2. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 1997;272:H220–H226.

    PubMed  CAS  Google Scholar 

  3. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998;83:15–26.

    PubMed  CAS  Google Scholar 

  4. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493–495.

    Article  PubMed  CAS  Google Scholar 

  5. Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat Rec 1975;182:215–235.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.

    Article  PubMed  CAS  Google Scholar 

  7. Pouzet B, Vilquin JT, Hagege AA, et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann Thorac Surg 2001;71:844–851.

    Article  PubMed  CAS  Google Scholar 

  8. Atkins BZ, Hueman MT, Meuchel JM, Cottman MJ, Hutcheson KA, Taylor DA. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant 1999;18:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  9. Jain M, DerSimonian H, Brenner DA, et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 2001;103:1920–1927.

    PubMed  CAS  Google Scholar 

  10. Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003;24:2012–2020.

    Article  PubMed  Google Scholar 

  11. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279–280.

    Article  PubMed  CAS  Google Scholar 

  12. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083.

    Article  PubMed  Google Scholar 

  13. Tang YL. Cellular therapy with autologous skeletal myoblasts for ischemic heart disease and heart failure. Methods Mol Med 2005;112:193–204.

    PubMed  Google Scholar 

  14. Tremblay JP, Roy B, Goulet M. Human myoblast transplantation: a simple assay for tumorigenicity. Neuromuscul Disord 1991;1:341–343.

    Article  PubMed  CAS  Google Scholar 

  15. Koh GY, Klug MG, Soonpaa MH, Field LJ. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993;92:1548–1554.

    PubMed  CAS  Google Scholar 

  16. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512–2523.

    PubMed  CAS  Google Scholar 

  17. Erzen I, Primc M, Janmot C, Cvetko E, Sketelj J, d’Albis A. Myosin heavy chain profiles in regenerated fast and slow muscles innervated by the same motor nerve become nearly identical. Histochem J 1999;31:277–283.

    Article  PubMed  CAS  Google Scholar 

  18. Muller P, Beltrami AP, Cesselli D, Pfeiffer P, Kazakov A, Bohm M. Myocardial regeneration by endogenous adult progenitor cells. J Mol Cell Cardiol 2005;39:377–387.

    Article  PubMed  CAS  Google Scholar 

  19. Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 2000;149:731–740.

    Article  PubMed  CAS  Google Scholar 

  20. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002;159:123–134.

    Article  PubMed  CAS  Google Scholar 

  21. Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12–18.

    PubMed  CAS  Google Scholar 

  22. Huwer H, Winning J, Vollmar B, et al. Long-term cell survival and hemodynamic improvements after neonatal cardiomyocyte and satellite cell transplantation into healed myocardial cryoinfarcted lesions in rats. Cell Transplant 2003;12:757–767.

    PubMed  Google Scholar 

  23. Suzuki K, Murtuza B, Heslop L, et al. Single fibers of skeletal muscle as a novel graft for cell transplantation to the heart. J Thorac Cardiovasc Surg 2002;123:984–992.

    Article  PubMed  Google Scholar 

  24. Toh R, Kawashima S, Kawai M, et al. Transplantation of cardiotrophin-1-expressing myoblasts to the left ventricular wall alleviates the transition from compensatory hypertrophy to congestive heart failure in Dahl salt-sensitive hypertensive rats. J Am Coll Cardiol 2004;43:2337–2347.

    Article  PubMed  CAS  Google Scholar 

  25. Pouly J, Hagege AA, Vilquin JT, et al. Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation 2004;110:1626–1631.

    Article  PubMed  Google Scholar 

  26. Ohno N, Fedak PW, Weisel RD, Mickle DA, Fujii T, Li RK. Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: effects on left ventricular geometry and function. J Thorac Cardiovasc Surg 2003;126:1537–1548.

    Article  PubMed  Google Scholar 

  27. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH. Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 2001;104:1213–1217.

    Article  Google Scholar 

  28. Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL. Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci 2002;115:1623–1634.

    PubMed  CAS  Google Scholar 

  29. Perriard JC, Hirschy A, Ehler E. Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 2003;13:30–38.

    Article  PubMed  Google Scholar 

  30. Iijima Y, Nagai T, Mizukami M, et al. Beating is necessary for transdifferentiation of skeletal musclederived cells into cardiomyocytes. FASEB J 2003;10:1096–1111.

    Google Scholar 

  31. Formigli L, Francini F, Tani A, et al. Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment. Am J Physiol Cell Physiol 2005;288:C795–C804.

    Article  PubMed  CAS  Google Scholar 

  32. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 2003;100:7808–7811.

    Article  PubMed  CAS  Google Scholar 

  33. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–249.

    Article  PubMed  CAS  Google Scholar 

  34. Menasche P. Myoblast transplantation: feasibility, safety and efficacy. Ann Med 2002;34:314–315.

    Article  PubMed  CAS  Google Scholar 

  35. Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989;340:230–233.

    Article  PubMed  CAS  Google Scholar 

  36. Garcia J, Tanabe T, Beam KG. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J Gen Physiol 1994;103:125–147.

    Article  PubMed  CAS  Google Scholar 

  37. Menasche P. Skeletal myoblast for cell therapy. Coron Artery Dis 2005;16:105–110.

    Article  PubMed  Google Scholar 

  38. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 2002;13:2909–2918.

    Article  PubMed  CAS  Google Scholar 

  39. Yau TM, Li G, Weisel RD, et al. Vascular endothelial growth factor transgene expression in celltransplanted hearts. J Thorac Cardiovasc Surg 2004;127:1180–1187.

    Article  PubMed  Google Scholar 

  40. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000;106:1511–1519.

    Article  PubMed  CAS  Google Scholar 

  41. Germani A, Di Carlo A, Mangoni A, et al. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 2003;163:1417–1428.

    PubMed  CAS  Google Scholar 

  42. Liu PP, Mak S, Stewart DJ. Potential role of the microvasculature in progression of heart failure. Am J Cardiol 1999;84:23L–26L.

    Article  PubMed  CAS  Google Scholar 

  43. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002;106:3009–3017.

    Article  PubMed  Google Scholar 

  44. El Fahime E, Bouchentouf M, Benabdallah BF, et al. Tubulyzine, a novel tri-substituted triazine, prevents the early cell death of transplanted myogenic cells and improves transplantation success. Biochem Cell Biol 2003;81:81–90.

    Article  PubMed  Google Scholar 

  45. Pouzet B, Ghostine S, Vilquin JT, et al. Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors? Circulation 2001;104:1223–1228.

    Article  Google Scholar 

  46. Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 2005;97:159–167.

    Article  PubMed  CAS  Google Scholar 

  47. El Fahime E, Mills P, Lafreniere JF, Torrente Y, Tremblay JP. The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation. Exp Cell Res 2002;280:169–178.

    Article  PubMed  CAS  Google Scholar 

  48. Lafreniere JF, Mills P, Tremblay JP, Fahime EE. Growth factors improve the in vivo migration of human skeletal myoblasts by modulating their endogenous proteolytic activity. Transplantation 2004;77:1741–1747.

    Article  PubMed  CAS  Google Scholar 

  49. Chachques JC, Duarte F, Cattadori B, et al. Angiogenic growth factors and/or cellular therapy for myocardial regeneration: a comparative study. J Thorac Cardiovasc Surg 2004;128:245–253.

    Article  PubMed  CAS  Google Scholar 

  50. Powell C, Shansky J, Del Tatto M, et al. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum Gene Ther 1999;10:565–577.

    Article  PubMed  CAS  Google Scholar 

  51. El Oakley RM, Ooi OC, Bongso A, Yacoub MH. Myocyte transplantation for myocardial repair: a few good cells can mend a broken heart. Ann Thorac Surg 2001;71:1724–1733.

    Article  PubMed  Google Scholar 

  52. Reinecke H, Minami E, Virag JI, Murry CE. Gene transfer of connexin43 into skeletal muscle. Hum Gene Ther 2004;15:627–636.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki K, Murtuza B, Beauchamp JR, et al. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 2004;18:1153–1155.

    PubMed  CAS  Google Scholar 

  54. Suzuki K, Murtuza B, Beauchamp JR, et al. Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation 2004;110:11219–11224.

    Google Scholar 

  55. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–921.

    Article  PubMed  CAS  Google Scholar 

  56. Su CY, Chong KY, Chen J, Ryter S, Khardori R, Lai CC. A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection. J Mol Cell Cardiol 1999;31:845–855.

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki K, Murtuza B, Sammut IA, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 2002;106:1270–1276.

    Google Scholar 

  58. Suzuki K, Murtuza B, Smolenski RT, et al. Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 2001;104:1308–1313.

    Article  Google Scholar 

  59. Nam YJ, Mani K, Ashton AW, et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 2004;15:901–912.

    Article  PubMed  CAS  Google Scholar 

  60. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT. The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 2001;276:33,915–33,922.

    Article  PubMed  CAS  Google Scholar 

  61. Suzuki K, Brand NJ, Allen S, et al. Overexpression of connexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759–766.

    Article  PubMed  CAS  Google Scholar 

  62. Murry CE, Whitney ML, Reinecke H. Muscle cell grafting for the treatment and prevention of heart failure. J Card Fail 2002;8:S532–S541.

    Article  PubMed  Google Scholar 

  63. Reinecke H, Minami E, Virag JI, Murry CE. Gene transfer of connexin43 into skeletal muscle. Hum Gene Ther 2004;15:627–636.

    Article  PubMed  CAS  Google Scholar 

  64. Formigli L, Francini F, Chiappini L, Zecchi-Orlandini S, Bani D. Relaxin favors the morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture. Ann NY Acad Sci 2005;1041:444–445.

    Article  PubMed  CAS  Google Scholar 

  65. Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003;80:207–215.

    Article  PubMed  CAS  Google Scholar 

  66. Ostlund C, Bonne G, Schwartz K, Worman HJ. Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 2001;114:4435–4445.

    PubMed  CAS  Google Scholar 

  67. Ng SK, Lewis KE. Characteristics of myoblasts isolated from golden Syrian and dystrophic (strain CHF-146) hamsters. Can J Biochem Cell Biol 1985;63:730–736.

    Article  PubMed  CAS  Google Scholar 

  68. Azarnoush K, Maurel A, Sebbah L, et al. Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. J Thorac Cardiovasc Surg 2005;130:173–179.

    Article  PubMed  CAS  Google Scholar 

  69. Law PK, Haider K, Fang G, et al. Human VEGF165-myoblasts produce concomitant angiogenesis/ myogenesis in the regenerative heart. Mol Cell Biochem 2004;263:173–178.

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104:1207–1212.

    Article  Google Scholar 

  71. Haider H, Ye L, Jiang S, et al. Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. J Mol Med 2004;82:539–549.

    Article  PubMed  CAS  Google Scholar 

  72. Askari A, Unzek S, Goldman CK, et al. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 2004;43:1908–1914.

    Article  PubMed  CAS  Google Scholar 

  73. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000;102:898–901.

    PubMed  CAS  Google Scholar 

  74. Dib N, Michler RE, Pagani FD, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: 4 year follow-up. Circulation 2005;112(12):1748–1755.

    Article  PubMed  Google Scholar 

  75. Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with sixmonth follow-up. J Am Coll Cardiol 2003;42:2063–2069.

    Article  PubMed  Google Scholar 

  76. Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005;26:1188–1195.

    Article  PubMed  Google Scholar 

  77. Ince H, Petzsch M, Rehders TC, Kische S, Chatterjee T, Nienaber CA. [Percutaneous transplantation of autologous myoblasts in ischemic cardiomyopathy]. Herz 2005;30:223–231.

    Article  PubMed  Google Scholar 

  78. Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003;361:491–492.

    Article  PubMed  Google Scholar 

  79. Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 2003;41:879–888.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ashton, A.W., D’Alessandro, D., Michler, R.E. (2007). Use of Skeletal Myoblasts for the Treatment of Chronic Heart Failure. In: Penn, M.S. (eds) Stem Cells And Myocardial Regeneration. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-272-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-272-4_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-664-1

  • Online ISBN: 978-1-59745-272-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics