Skip to main content

Electrical Coupling and/or Ventricular Tachycardia Risk of Cell Therapy

  • Chapter
Stem Cells And Myocardial Regeneration

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Electromechanical coupling is crucial in the process of functional cardiomyocyte regeneration. Experimental and initial clinical studies have showed the high risk of arrhythmia in the animals and patients receiving cell transplantation from pluripotent stem cells. The mechanism underlying these arrhythmogenic properties is still unclear. The communications between the cells via gap junction formed by connexin proteins are essential for activating cardiac tissue, allowing propagation of electrical stimuli and related ionic currents. It has been shown that there is a functional gap junction between cardiomyocytes and most cells used for cell transplantation, such as human embryonic stem cells, human mesenchymal stem cells, bone marrow-derived mononuclear cells, and fibroblasts. Although it is still controversial, a recent study has shown that there are N-cadherin- and connexin-43-mediated junctions between skeletal myoblasts and cardiomyocytes, allowing them to induce synchronous beating. However, it should be emphasized that all of the cells mentioned above have been demonstrated to have pro-arrhythmogenic potentials. These factors must be weighed as we pursue the avenues of cell therapy for failed hearts. Experimental studies and initial clinical experience with cell transplantation has opened new perspectives for treatment of irreversibly injured myocardium. It must be pointed out that further studies, including experimental and clinical studies, are necessary to address the questions regarding the efficacy and long-term safety of cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22(10):1282–1289.

    Article  PubMed  CAS  Google Scholar 

  2. Rastan AJ, Walther T, Kostelka M, et al. Morphological, electrophysiological and coupling characteristics of bone marrow-derived mononuclear cells-an in vitro model. Eur J Cardiothorac Surg 2005;27:104–110.

    Article  PubMed  Google Scholar 

  3. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes. Circulation 2003;107:2733.

    Article  PubMed  CAS  Google Scholar 

  4. Valiunas V, Doronin S, Valiuniene L, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 2004;555(pt 3):617–626. Epub 2004 Feb 6.

    Article  PubMed  CAS  Google Scholar 

  5. Volk T, Geiger BA. 135-kD membrane protein of intercellular adherens junctions. EMBO J 1984;3:2249–2260.

    PubMed  CAS  Google Scholar 

  6. Beyer EC, Paul DL, Goodenough DA. Connexin43: a protein form rat heart homologous to a gap junction protein from liver. J Cell Biol 1987;105(pt I):2621–2629.

    Article  PubMed  CAS  Google Scholar 

  7. Egashira K, Nishii K, Nakamura K, Kumai M, Morimoto S, Shibata Y. Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. Anat Rec A Discov Mol Cell Evol Biol 2004;280(2):973–979.

    Article  PubMed  CAS  Google Scholar 

  8. Wong RC, Pebay A, Nguyen LT, Koh KL, Pera MF. Presence of functional gap junctions in human embryonic stem cells. Stem Cells 2004;22(6):883–889.

    Article  PubMed  CAS  Google Scholar 

  9. Valiunas V, Doronin S, Valiuniene L, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 2004;555(pt 3):617–626.

    Article  PubMed  CAS  Google Scholar 

  10. Durig J, Rosenthal C, Halfmeyer K, et al. Intercellular communication between bone marrow stromal cells and CD34+ haematopoietic progenitor cells is mediated by connexin 43-type gap junctions. Br J Haematol 2000;111(2):416–425.

    Article  PubMed  CAS  Google Scholar 

  11. Rastan AJ, Walther T, Kostelka M, et al. Morphological, electrophysiological and coupling characteristics of bone marrow-derived mononuclear cells-an in vitro model. Eur J Cardiothorac Surg 2005;27:104–110.

    Article  PubMed  Google Scholar 

  12. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 2005;65(1):40–51.

    Article  PubMed  CAS  Google Scholar 

  13. Mauro A. Satellite cells of skeletal muscle fibres. J Biophys Biochem Cytol 1961;9:493–497.

    Article  PubMed  CAS  Google Scholar 

  14. Koh GY, Klug MG, Soonpaa MH, et al. Differentiation and long-term survival of C2C12 myoblast graft in heart. J Clin Invest 1993;92:1548–1554.

    PubMed  CAS  Google Scholar 

  15. Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512–2523.

    Article  PubMed  CAS  Google Scholar 

  16. Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblast transplantation to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 2003;41

    Google Scholar 

  17. Dorfman J, Duong M, Zibaitis A, et al. Myocardial tissue engineering with autologous myoblast implantation. J Cardiovasc Surg 1998;116:744–751.

    Article  CAS  Google Scholar 

  18. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.

    Article  PubMed  CAS  Google Scholar 

  19. Menasché P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet 2001;357:279–280.

    Article  PubMed  Google Scholar 

  20. Rajnoch C, Chachques JC, Berrebi A, et al. Cellular therapy reverses myocardial dysfunction. J Thorac Cardiovasc Surg 2001;121:871–878.

    Article  PubMed  CAS  Google Scholar 

  21. Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Ann Rev Physiol 1999;61:219–242.

    Article  CAS  Google Scholar 

  22. Atkins BZ, Hueman MT, Meuchel JM, et al. Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant 1999;18:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  23. Ghostine S, Carrion C, Souza LC, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106:I131–I136.

    PubMed  Google Scholar 

  24. Hagege AA, Carion C, Menasché P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003;361:491–492.

    Article  PubMed  Google Scholar 

  25. Caspi O, Gepstein L. Potential applications of human embryonic stem cell-derived cardiomyocytes. Ann NY Acad Sci 2004;1015:285–298.

    Article  PubMed  Google Scholar 

  26. Zhang YM, Hartzell C, Narlow M, Dudley SC, Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 2002;106(10):1294–1299.

    Article  PubMed  Google Scholar 

  27. Zhang YM, Shang L, Hartzell C, Narlow M, Cribbs L, Dudley SC, Jr. Characterization and regulation of T-type Ca2+ channels in embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2003;285(6):H2770–2779.

    PubMed  CAS  Google Scholar 

  28. Yanagida E, Shoji S, Hirayama Y. Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium 2004;36(2):135–146.

    Article  PubMed  CAS  Google Scholar 

  29. Raman SV, Cooke GE, Binkley PF. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 2003;107:e195.

    PubMed  Google Scholar 

  30. Siepe M, Heilmann C, von Samson P, Menasche P, Beyersdorf F. Stem cell research and cell transplantation for myocardial regeneration. Eur J Cardiothorac Surg 2005; [Epub ahead of print].

    Google Scholar 

  31. Alfieri O, Livi U, Martinelli L, et al. Myoblast transplantation for heart failure: where are we heading? Ital Heart J 2005;6(4):284–288.

    PubMed  Google Scholar 

  32. Menasche P. Skeletal myoblast for cell therapy. Coron Artery Dis 2005;16(2):105–110.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hu, D., Yang, S. (2007). Electrical Coupling and/or Ventricular Tachycardia Risk of Cell Therapy. In: Penn, M.S. (eds) Stem Cells And Myocardial Regeneration. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-272-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-272-4_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-664-1

  • Online ISBN: 978-1-59745-272-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics