Skip to main content

Stem Cell Differentiation Toward a Cardiac Myocyte Phenotype

  • Chapter
Stem Cells And Myocardial Regeneration

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Understanding cardiac myocyte differentiation during embryonic heart development will provide insight into how to promote cardiac myogenesis in stem cell populations for cell-based therapies. This chapter reviews what is known about the embryonic origin of cardiac myocytes in vertebrates, the signals that induce myocardial cell specification, the factors that regulate transcription during cardiac myocyte differentiation, and the regulatory networks that connect them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993;119(1):31–40.

    PubMed  CAS  Google Scholar 

  2. Keller RE. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Dev Biol 1976;51(1):118–137.

    Article  PubMed  CAS  Google Scholar 

  3. Hatada Y, Stern CD. A fate map of the epiblast of the early chick embryo. Development 1994;120(10):2879–2889.

    PubMed  CAS  Google Scholar 

  4. Parameswaran M, Tam PP. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 1995;17(1):16–28.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Martinez V, Schoenwolf GC. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 1993;159(2):706–719.

    Article  PubMed  CAS  Google Scholar 

  6. Kelly RG, Buckingham ME. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 2002;18(4):210–216.

    Article  PubMed  CAS  Google Scholar 

  7. Sater AK, Jacobson AG. The role of the dorsal lip in the induction of heart mesoderm in Xenopus laevis. Development 1990;108(3):461–470.

    PubMed  CAS  Google Scholar 

  8. Nascone N, Mercola M. An inductive role for the endoderm in Xenopus cardiogenesis. Development 1995;121(2):515–523.

    PubMed  CAS  Google Scholar 

  9. Antin PB, Taylor RG, Yatskievych T. Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 1994;200(2):144–154.

    PubMed  CAS  Google Scholar 

  10. Montgomery MO, Litvin J, Gonzalez-Sanchez A, Bader D. Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 1994;164(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  11. Yatskievych TA, Ladd AN, Antin PB. Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 1997;124(13):2561–2570.

    PubMed  CAS  Google Scholar 

  12. Azar Y, Eyal-Giladi H. Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments. J Embryol Exp Morphol 1981;61:133–144.

    PubMed  CAS  Google Scholar 

  13. Mitrani E, Eyal-Giladi H. Hypoblastic cells can form a disk inducing an embryonic axis in chick epiblast. Nature 1981;289(5800):800–802.

    Article  PubMed  CAS  Google Scholar 

  14. Schultheiss TM, Xydas S, Lassar AB. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995;121(12):4203–4214.

    PubMed  CAS  Google Scholar 

  15. Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 1995;168(2):567–574.

    Article  PubMed  CAS  Google Scholar 

  16. Arai A, Yamamoto K, Toyama J. Murine cardiac progenitor cells require visceral embryonic endoderm and primitive streak for terminal differentiation. Dev Dyn 1997;210(3):344–353.

    Article  PubMed  CAS  Google Scholar 

  17. Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990;63(3):495–501.

    Article  PubMed  CAS  Google Scholar 

  18. Sanders E, Hu N, Wride M. Expression of TGFβ1/β3 during early chick embryo development. Anat Res 1994;238:397–406.

    Article  CAS  Google Scholar 

  19. Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol 1998;204(2):407–419.

    Article  PubMed  CAS  Google Scholar 

  20. Andree B, Duprez D, Vorbusch B, Arnold HH, Brand T. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998;70(1–2):119–131.

    Article  PubMed  CAS  Google Scholar 

  21. Streit A, Lee KJ, Woo I, Roberts C, Jessell TM, Stern CD. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 1998;125(3):507–519.

    PubMed  CAS  Google Scholar 

  22. Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 2005;23(5):607–611.

    Article  PubMed  CAS  Google Scholar 

  23. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997;11(4):451–462.

    Article  PubMed  CAS  Google Scholar 

  24. Shi Y, Katsev S, Cai C, Evans S. BMP signaling is required for heart formation in vertebrates. Dev Biol 2000;224(2):226–237.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996;122(10):2977–2986.

    PubMed  CAS  Google Scholar 

  26. Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X. Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 1996;178(1):198–202.

    Article  PubMed  CAS  Google Scholar 

  27. Kawai T, Takahashi T, Esaki M, et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J 2004;68(7):691–702.

    Article  PubMed  CAS  Google Scholar 

  28. Alsan BH, Schultheiss TM. Regulation of avian cardiogenesis by Fgf8 signaling. Development 2002;129(8):1935–1943.

    PubMed  CAS  Google Scholar 

  29. Shen MM, Wang H, Leder P. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 1997;124(2):429–442.

    PubMed  CAS  Google Scholar 

  30. Brandt R, Normanno N, Gullick WJ, et al. Identification and biological characterization of an epidermal growth factor-related protein: cripto-1. J Biol Chem 1994;269(25):17,320–17,328.

    PubMed  CAS  Google Scholar 

  31. Dono R, Scalera L, Pacifico F, Acampora D, Persico MG, Simeone A. The murine cripto gene: expression during mesoderm induction and early heart morphogenesis. Development 1993;118(4):1157–1168.

    PubMed  CAS  Google Scholar 

  32. Johnson SE, Rothstein JL, Knowles BB. Expression of epidermal growth factor family gene members in early mouse development. Dev Dyn 1994;201(3):216–226.

    PubMed  CAS  Google Scholar 

  33. Xu C, Liguori G, Adamson ED, Persico MG. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev Biol 1998;196(2):237–247.

    Article  PubMed  CAS  Google Scholar 

  34. Ding J, Yang L, Yan YT, et al. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 1998;395(6703):702–707.

    Article  PubMed  CAS  Google Scholar 

  35. Xu C, Liguori G, Persico MG, Adamson ED. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development 1999;126(3):483–494.

    PubMed  CAS  Google Scholar 

  36. Klingensmith J, Ang SL, Bachiller D, Rossant J. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev Biol 1999;216(2):535–549.

    Article  PubMed  CAS  Google Scholar 

  37. Tzahor E, Lassar AB. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 2001;15(3):255–260.

    Article  PubMed  CAS  Google Scholar 

  38. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 2001;15(3):304–315.

    Article  PubMed  CAS  Google Scholar 

  39. Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 2002;3(2):171–181.

    Article  PubMed  CAS  Google Scholar 

  40. Pandur P, Lasche M, Eisenberg LM, Kuhl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002;418(6898):636–641.

    Article  PubMed  CAS  Google Scholar 

  41. Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun 2004;325(3):968–975.

    Article  PubMed  CAS  Google Scholar 

  42. Rones MS, McLaughlin KA, Raffin M, Mercola M. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development 2000;127(17):3865–3876.

    PubMed  CAS  Google Scholar 

  43. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993;118(3):719–729.

    PubMed  CAS  Google Scholar 

  44. Chen JN, Fishman MC. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 1996;122(12):3809–3816.

    PubMed  CAS  Google Scholar 

  45. Tonissen KF, Drysdale TA, Lints TJ, Harvey RP, Krieg PA. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev Biol 1994;162(1):325–328.

    Article  PubMed  CAS  Google Scholar 

  46. Komuro I, Izumo S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 1993;90(17):8145–8149.

    Article  PubMed  CAS  Google Scholar 

  47. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 1993;119(3):969.

    PubMed  CAS  Google Scholar 

  48. O’Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 1993;90(11):5157–5161.

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999;126(6):1269–1280.

    PubMed  CAS  Google Scholar 

  50. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995;9(13):1654–1666.

    Article  PubMed  CAS  Google Scholar 

  51. Grow MW, Krieg PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev Biol 1998;204(1):187–196.

    Article  PubMed  CAS  Google Scholar 

  52. Fu Y, Yan W, Mohun TJ, Evans SM. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998;125(22):4439–4449.

    PubMed  CAS  Google Scholar 

  53. Ranganayakulu G, Elliott DA, Harvey RP, Olson EN. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 1998;125(16):3037–3048.

    PubMed  CAS  Google Scholar 

  54. Park M, Lewis C, Turbay D, et al. Differential rescue of visceral and cardiac defects in Drosophila by vertebrate tinman-related genes. Proc Natl Acad Sci USA 1998;95(16):9366–9371.

    Article  PubMed  CAS  Google Scholar 

  55. Cleaver OB, Patterson KD, Krieg PA. Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 1996;122(11):3549–3556.

    PubMed  CAS  Google Scholar 

  56. Molkentin JD, Tymitz KM, Richardson JA, Olson EN. Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol 2000;20(14):5256–5260.

    Article  PubMed  CAS  Google Scholar 

  57. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997;11(8):1048–1060.

    Article  PubMed  CAS  Google Scholar 

  58. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 1997;11(8):1061–1072.

    Article  PubMed  CAS  Google Scholar 

  59. Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F. The transcription factor GATA6 is essential for early extraembryonic development. Development 1999;126(4):723–732.

    CAS  Google Scholar 

  60. Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 1997;124(19):3755–3764.

    PubMed  CAS  Google Scholar 

  61. Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 1999;13(22):2983–2995.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang H, Toyofuku T, Kamei J, Hori M. GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene. Biochem Biophys Res Commun 2003;312(4):1033–1038.

    Article  PubMed  CAS  Google Scholar 

  63. Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994;120(5):1251–1263.

    PubMed  CAS  Google Scholar 

  64. Iannello RC, Mar JH, Ordahl CP Characterization of a promoter element required for transcription in myocardial cells. J Biol Chem 1991;266(5):3309–3316.

    PubMed  CAS  Google Scholar 

  65. Navankasattusas S, Zhu H, Garcia AV, Evans SM, Chien KR. A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mol Cell Biol 1992;12(4):1469–1479.

    PubMed  CAS  Google Scholar 

  66. Navankasattusas S, Sawadogo M, van Bilsen M, Dang CV, Chien KR. The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol Cell Biol 1994;14(11):7331–7339.

    PubMed  CAS  Google Scholar 

  67. Zhu H, Nguyen V, Brown A, et al. A novel, tissue restricted zinc finger protein (HR-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light chain-2 gene. Mol Cell Biol 1993;13:4432–4444.

    PubMed  CAS  Google Scholar 

  68. Lilly B, Zhao B, Ranganayakulu G, Paterson B, Schultz R, Olson EN. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 1995;267:688–693.

    Article  PubMed  CAS  Google Scholar 

  69. Molkentin J, Olson E. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 1996;93(18):9366–9373.

    Article  PubMed  CAS  Google Scholar 

  70. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997;276(5317):1404–1407.

    Article  PubMed  CAS  Google Scholar 

  71. Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis. Science 1995;270(5244):1995–1999.

    Article  PubMed  CAS  Google Scholar 

  72. Sparrow DB, Kotecha S, Towers N, Mohun TJ. Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins. Mech Dev 1998;71(1–2):151–163.

    Article  PubMed  CAS  Google Scholar 

  73. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 1997;16(2):154–160.

    Article  PubMed  CAS  Google Scholar 

  74. Firulli AB, McFadden DG, Lin Q, Srivastava D, Olson EN. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet 1998;18(3):266–270.

    Article  PubMed  CAS  Google Scholar 

  75. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997;15(1):30–35.

    Article  PubMed  CAS  Google Scholar 

  76. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997;15(1):21–29.

    Article  PubMed  Google Scholar 

  77. Plageman TF, Jr., Yutzey KE. T-box genes and heart development: putting the “T” in heart. Dev Dyn 2005;232(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  78. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001;106(6):709–721.

    Article  PubMed  CAS  Google Scholar 

  79. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27(3):286–291.

    Article  PubMed  CAS  Google Scholar 

  80. Davenport TG, Jerome-Majewska LA, Papaioannou VE. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 2003;130(10):2263–2273.

    Article  PubMed  CAS  Google Scholar 

  81. Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 2002;90(5):509–519.

    Article  PubMed  Google Scholar 

  82. Cohen-Barak O, Yi Z, Hagiwara N, Monzen K, Komuro I, Brilliant MH. Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 2003;31(20):5941–5948.

    Article  PubMed  CAS  Google Scholar 

  83. Satou Y, Imai KS, Satoh N. The ascidian Mesp gene specifies heart precursor cells. Development 2004;131(11):2533–2541.

    Article  PubMed  CAS  Google Scholar 

  84. Li J, Zhu X, Chen M, et al. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc Natl Acad Sci USA 2005;102(25):8916–8921.

    Article  PubMed  CAS  Google Scholar 

  85. McBride K, Nemer M. Regulation of the ANF and BNP promoters by GATA factors: lessons learned for cardiac transcription. Can J Physiol Pharmacol 2001;79(8):673–681.

    Article  PubMed  CAS  Google Scholar 

  86. Morin S, Charron F, Robitaille L, Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 2000;19(9):2046–2055.

    Article  PubMed  CAS  Google Scholar 

  87. DeHaan R. Morphogenesis of the vertebrate heart. In: DeHaan R, Ursprung H, eds. Organogenesis. Holt, Reinhart, and Winston, New York, 1965, pp. 377–419.

    Google Scholar 

  88. Yutzey KE, Rhee JT, Bader D. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 1994;120(4):871–883.

    PubMed  CAS  Google Scholar 

  89. Yutzey KE, Bader D. Diversification of cardiomyogenic cell lineages during early heart development. Circ Res 1995;77(2):216–219.

    PubMed  CAS  Google Scholar 

  90. Gonzalez-Sanchez A, Bader D. In vitro analysis of cardiac progenitor cell differentiation. Dev Biol 1990;139(1):197–209.

    Article  PubMed  CAS  Google Scholar 

  91. Bisaha JG, Bader D. Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1: expression in differentiating cardiac and skeletal muscle. Dev Biol 1991;148(1):355–364.

    Article  PubMed  CAS  Google Scholar 

  92. Bao ZZ, Bruneau BG, Seidman JG, Seidman CE, Cepko CL. Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 1999;283(5405):1161–1164.

    Article  PubMed  CAS  Google Scholar 

  93. Bruneau BG, Bao ZZ, Fatkin D, et al. Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol Cell Biol 2001;21(5):1730–1736.

    Article  PubMed  CAS  Google Scholar 

  94. Kokubo H, Lun Y, Johnson RL. Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 1999;260(2):459–465.

    Article  PubMed  CAS  Google Scholar 

  95. Kokubo H, Miyagawa-Tomita S, Tomimatsu H, et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res 2004;95(5):540–547.

    Article  PubMed  CAS  Google Scholar 

  96. Lien CL, McAnally J, Richardson JA, Olson EN. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol 2002;244(2):257–266.

    Article  PubMed  CAS  Google Scholar 

  97. Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE. Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev Biol 2002;244(2):243–256.

    Article  PubMed  CAS  Google Scholar 

  98. Monzen K, Hiroi Y, Kudoh S, et al. Smads, TAK1, and their common target ATF-2 play a critical role in cardiomyocyte differentiation. J Cell Biol 2001;153(4):687–698.

    Article  PubMed  CAS  Google Scholar 

  99. Nemer G, Nemer M. Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and-6. Dev Biol 2003;254(1):131–148.

    Article  PubMed  CAS  Google Scholar 

  100. Peterkin T, Gibson A, Patient R. GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation. EMBO J 2003;22(16):4260–4273.

    Article  PubMed  CAS  Google Scholar 

  101. Brown CO, 3rd, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 2004;279(11):10,659–10,669.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ladd, A.N. (2007). Stem Cell Differentiation Toward a Cardiac Myocyte Phenotype. In: Penn, M.S. (eds) Stem Cells And Myocardial Regeneration. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-272-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-272-4_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-664-1

  • Online ISBN: 978-1-59745-272-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics