Skip to main content

Novel Mechanisms of Drug Treatment in Psychiatry

  • Chapter
The Medical Basis of Psychiatry

Abstract

In this chapter, we review potential novel mechanisms of drug treatment in psychiatry. We emphasize novel {molecular} targets and potential indications for a number of psychiatric diseases, including depression, anxiety, and schizophrenia. In many cases, novel mechanisms have only been validated in preclinical model systems, and we suggest increasing efforts for providing early stage clinical trials of medications for drugs with novel mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov 2005;4:1005–1014.

    Article  PubMed  CAS  Google Scholar 

  2. Stahl SM. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx 2006;3:3–9.

    Article  PubMed  CAS  Google Scholar 

  3. Morilak DA, Frazer A. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 2004;7:193–218.

    Article  PubMed  CAS  Google Scholar 

  4. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002;34:13–25.

    Article  PubMed  CAS  Google Scholar 

  5. Kroeze WK, Sheffler DJ, Roth BL. G-protein-coupled receptors at a glance. J Cell Sci 2003;116:4867–4869.

    Article  PubMed  CAS  Google Scholar 

  6. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7:295–309.

    Article  PubMed  CAS  Google Scholar 

  7. Feiger AD, Rickels K, Rynn MA, Zimbroff DL, Robinson DS. Selegiline transdermal system for the treatment of major depressive disorder: an 8-week, double-blind, placebo-controlled, flexible-dose titration trial. J Clin Psychiatry 2006;67:1354–1361.

    Article  PubMed  CAS  Google Scholar 

  8. Spedding M, Jay T, Costa e Silva J, Perret L. A pathophysiological paradigm for the therapy of psychiatric disease. Nat Rev Drug Discov 2005;4:467–476.

    Article  PubMed  CAS  Google Scholar 

  9. Holtzheimer PE 3rd, Nemeroff CB. Advances in the treatment of depression. NeuroRx 2006;3:42–56.

    Article  PubMed  CAS  Google Scholar 

  10. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 2004;3:353–359.

    Article  PubMed  CAS  Google Scholar 

  11. Palvimaki EP, Roth BL, Majasuo H, et al. Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2c receptor. Psychopharmacology (Berl) 1996;126:234–240.

    Article  CAS  Google Scholar 

  12. Schechter LE, Ring RH, Beyer CE, et al. Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx 2005;82:590–611.

    Article  Google Scholar 

  13. Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378–383.

    Article  PubMed  CAS  Google Scholar 

  14. Serres F, Muma NA, Raap DK, Garcia F, Battaglia G, Van de Kar LD. Coadministration of 5-hydroxytryptamine(1A) antagonist WAY-100635 prevents fluoxetine-induced desensitization of postsynaptic 5- hydroxytryptamine(1A) receptors in hypothalamus. J Pharmacol Exp Ther 2000;294:296–301.

    PubMed  CAS  Google Scholar 

  15. Heisler LK, Chu HM, Brennan TJ, et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA 1998;95:15049–15054.

    Article  PubMed  CAS  Google Scholar 

  16. Ramboz S, Oosting R, Amara DA, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 1998;95:14476–14481.

    Article  PubMed  CAS  Google Scholar 

  17. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE. WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology (Berl) 2006;188:244–251.

    Article  CAS  Google Scholar 

  18. Bonci A, Hopf FW. The dopamine D2 receptor: new surprises from an old friend. Neuron 2005;47:335–338.

    Article  PubMed  CAS  Google Scholar 

  19. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 1983;275:321–328.

    Article  PubMed  CAS  Google Scholar 

  20. Roth BL, Kroeze WK. Screening the receptorome yields validated molecular targets for drug discovery. Curr Pharm Des 2006;12:1785–1795.

    Article  PubMed  CAS  Google Scholar 

  21. Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK. Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx 2006;3:22–41.

    Article  PubMed  CAS  Google Scholar 

  22. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000;23:155–184.

    Article  PubMed  CAS  Google Scholar 

  23. Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann NY Acad Sci 2003;1003:250–272.

    Article  PubMed  CAS  Google Scholar 

  24. Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann NY Acad Sci 2003;1003:292–308.

    Article  PubMed  CAS  Google Scholar 

  25. Petrie RX, Reid IC, Stewart CA. The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Ther 2000;87:11–25.

    CAS  Google Scholar 

  26. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006;7:137–151.

    Article  PubMed  CAS  Google Scholar 

  27. Bleakman D, Lodge D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 1998;37:1187–1204.

    Article  PubMed  CAS  Google Scholar 

  28. Black MD. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology (Berl) 2005;179:154–163.

    Article  CAS  Google Scholar 

  29. Alt A, Witkin JM, Bleakman D. AMPA receptor potentiators as novel antidepressants. Curr Pharm Des 2005;11:1511–1527.

    Article  PubMed  CAS  Google Scholar 

  30. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 2000;20:8–21.

    PubMed  CAS  Google Scholar 

  31. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 2003;17:2409–2417.

    Article  PubMed  Google Scholar 

  32. Duvoisin RM, Zhang C, Pfankuch TF, et al. Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci 2005;22:425–436.

    Article  PubMed  Google Scholar 

  33. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005;4:131–144.

    Article  PubMed  CAS  Google Scholar 

  34. Bettler B, Tiao JY. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006;110:533–543.

    Article  PubMed  CAS  Google Scholar 

  35. Whiting PJ. The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel 2003;6:648–657.

    PubMed  CAS  Google Scholar 

  36. Barbaccia ML. Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol 2004;16:67–74.

    Article  PubMed  CAS  Google Scholar 

  37. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003;24:580–588.

    Article  PubMed  CAS  Google Scholar 

  38. Herpfer I, Lieb K. Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. CNS Drugs 2005;19:275–293.

    Article  PubMed  CAS  Google Scholar 

  39. Rupniak NM, Kramer MS. Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol Sci 1999;20:485–490.

    Article  PubMed  CAS  Google Scholar 

  40. Santarelli L, Gobbi G, Debs PC, et al. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci USA 2001;98:1912–1917.

    Article  PubMed  CAS  Google Scholar 

  41. Kramer MS, Cutler N, Feighner J, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998;281:1640–1645.

    Article  PubMed  CAS  Google Scholar 

  42. Rokosz LL, Hobbs DW. Biological examination of melanin concentrating hormone receptor 1: multi-tasking from the hypothalamus. Drug News Perspect 2006;19:273–286.

    Article  PubMed  CAS  Google Scholar 

  43. Shimazaki T, Yoshimizu T, Chaki S. Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs 2006;20:801–811.

    Article  PubMed  CAS  Google Scholar 

  44. Lembo PM, Grazzini E, Cao J, et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1999;1:267–271.

    Article  PubMed  CAS  Google Scholar 

  45. Georgescu D, Sears RM, Hommel JD, et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 2005;25:2933–2940.

    Article  PubMed  CAS  Google Scholar 

  46. Borowsky B, Durkin MM, Ogozalek K, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 2002;8:825–830.

    PubMed  CAS  Google Scholar 

  47. Ring RH. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des 2005;11:205–225.

    Article  PubMed  CAS  Google Scholar 

  48. Sapolsky RM. Stress hormones: good and bad. Neurobiol Dis 2000;7:540–542.

    Article  PubMed  CAS  Google Scholar 

  49. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463–475.

    Article  PubMed  CAS  Google Scholar 

  50. Drevets WC, Price JL, Simpson JR Jr, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386:824–827.

    Article  PubMed  CAS  Google Scholar 

  51. Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004;161:598–607.

    Article  PubMed  Google Scholar 

  52. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996;93:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  53. MacQueen GM, Campbell S, McEwen BS, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003;100:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  54. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 2004;161:195–216.

    Article  PubMed  Google Scholar 

  55. Coplan JD, Andrews MW, Rosenblum LA, et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci USA 1996;93:1619–1623.

    Article  PubMed  CAS  Google Scholar 

  56. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525–557.

    Article  PubMed  CAS  Google Scholar 

  57. Wei Q, Lu XY, Liu L, et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004;101:11851–11856.

    Article  PubMed  CAS  Google Scholar 

  58. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005;6:603–614.

    Article  PubMed  CAS  Google Scholar 

  59. Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805–809.

    Article  PubMed  CAS  Google Scholar 

  60. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 2006;103:8233–8238.

    Article  PubMed  CAS  Google Scholar 

  61. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A Role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61:661–670.

    Article  PubMed  CAS  Google Scholar 

  62. Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003;38:157–160.

    Article  PubMed  CAS  Google Scholar 

  63. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251–3261.

    PubMed  CAS  Google Scholar 

  64. Monteggia LM, Barrot M, Powell CM, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004;101:10827–10832.

    Article  PubMed  CAS  Google Scholar 

  65. Berton O, McClung CA, Dileone RJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006;311:864–868.

    Article  PubMed  CAS  Google Scholar 

  66. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005;28:436–445.

    Article  PubMed  CAS  Google Scholar 

  67. Thome J, Sakai N, Shin K, et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000;20:4030–4036.

    PubMed  CAS  Google Scholar 

  68. McLaughlin JP, Marton-Popovici M, Chavkin C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 2003;23:5674–5683.

    PubMed  CAS  Google Scholar 

  69. Vortherms TA, Roth BL. Salvinorin A: from natural product to human therapeutics. Mol Interv 2006;6:257–265.

    Article  PubMed  CAS  Google Scholar 

  70. Einat H, Yuan P, Manji HK. Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005;165:172–180.

    Article  PubMed  CAS  Google Scholar 

  71. Barden N, Shink E, Labbe M, Vacher R, Rochford J, Mocaer E. Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:908–916.

    Article  PubMed  CAS  Google Scholar 

  72. Lu XY, Kim CS, Frazer A, Zhang W. Leptin: a potential novel antidepressant. Proc Natl Acad Sci USA 2006;103:1593–1598.

    Article  PubMed  CAS  Google Scholar 

  73. Dunn AJ, Swiergiel AH, de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 2005;29:891–909.

    Article  PubMed  CAS  Google Scholar 

  74. Revicki DA, Matza LS, Flood E, Lloyd A. Bipolar disorder and health-related quality of life: review of burden of disease and clinical trials. Pharmacoeconomics 2005;23:583–594.

    Article  PubMed  Google Scholar 

  75. Chuang DM. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit Rev Neurobiol 2004;16:83–90.

    Article  PubMed  CAS  Google Scholar 

  76. Chuang DM. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann NY Acad Sci 2005;1053:195–204.

    Article  PubMed  CAS  Google Scholar 

  77. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005;10:900–919.

    Article  PubMed  CAS  Google Scholar 

  78. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005;14:241–253.

    Article  PubMed  CAS  Google Scholar 

  79. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002;418:935–941.

    Article  PubMed  CAS  Google Scholar 

  80. Mansour HA, Monk TH, Nimgaonkar VL. Circadian genes and bipolar disorder. Ann Med 2005;37:196–205.

    Article  PubMed  CAS  Google Scholar 

  81. Prickaerts J, Moechars D, Cryns K, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006;26:9022–9029.

    Article  PubMed  CAS  Google Scholar 

  82. Gould TD, Picchini AM, Einat H, Manji HK. Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders. Curr Drug Targets 2006;7:1399–1409.

    PubMed  CAS  Google Scholar 

  83. Kariya S, Hirano M, Uesato S, et al. Cytoprotective effect of novel histone deacetylase inhibitors against polyglutamine toxicity. Neurosci Lett 2006;392:213–215.

    Article  PubMed  CAS  Google Scholar 

  84. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001;276:36734–36741.

    Article  PubMed  CAS  Google Scholar 

  85. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519–525.

    Article  PubMed  CAS  Google Scholar 

  86. Hahn CG, Friedman E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord 1999;1:81–86.

    Article  PubMed  CAS  Google Scholar 

  87. Bauer M, London ED, Silverman DH, Rasgon N, Kirchheiner J, Whybrow PC. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging. Pharmacopsychiatry 2003;36(Suppl 3):S215–221.

    Google Scholar 

  88. Lifschytz T, Segman R, Shalom G, et al. Basic mechanisms of augmentation of antidepressant effects with thyroid hormone. Curr Drug Targets 2006;7:203–210.

    Article  PubMed  CAS  Google Scholar 

  89. Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 2005;10:808–819.

    PubMed  Google Scholar 

  90. Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx 2006;3:57–68.

    Article  PubMed  CAS  Google Scholar 

  91. Dawson GR, Collinson N, Atack JR. Development of subtype selective GABAA modulators. CNS Spectr 2005;10:21–27.

    PubMed  Google Scholar 

  92. McKernan RM, Rosahl TW, Reynolds DS, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 2000;3:587–592.

    Article  PubMed  CAS  Google Scholar 

  93. Cahill L, Weinberger NM, Roozendaal B, McGaugh JL. Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 1999;23:227–228.

    Article  PubMed  CAS  Google Scholar 

  94. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 2001;8:229–242.

    Article  PubMed  CAS  Google Scholar 

  95. Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001;7:541–547.

    Article  PubMed  CAS  Google Scholar 

  96. Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994;17:208–214.

    Article  PubMed  CAS  Google Scholar 

  97. Davis M, Ressler K, Rothbaum BO, Richardson R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry 2006;60:369–375.

    Article  PubMed  CAS  Google Scholar 

  98. Fraser CM, Cooke MJ, Fisher A, Thompson ID, Stone TW. Interactions between ifenprodil and dizocilpine on mouse behaviour in models of anxiety and working memory. Eur Neuropsychopharmacol 1996;6:311–316.

    Article  PubMed  CAS  Google Scholar 

  99. Samson AL, Medcalf RL. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 2006;50:673–678.

    Article  PubMed  CAS  Google Scholar 

  100. Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S. Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA 2004;101:16345–16350.

    Article  PubMed  CAS  Google Scholar 

  101. Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 2003;6:168–174.

    Article  PubMed  CAS  Google Scholar 

  102. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005;353:2121–2134.

    Article  PubMed  CAS  Google Scholar 

  103. Gobbi G, Bambico FR, Mangieri R, et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 2005;102:18620–18625.

    Article  PubMed  CAS  Google Scholar 

  104. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003;9:76–81.

    Article  PubMed  CAS  Google Scholar 

  105. Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides 2004;38:213–224.

    Article  PubMed  CAS  Google Scholar 

  106. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 1998;95:10734–10739.

    Article  PubMed  CAS  Google Scholar 

  107. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA 2000;97:14731–14736.

    Article  PubMed  CAS  Google Scholar 

  108. Gross C, Zhuang X, Stark K, et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002;416:396–400.

    Article  PubMed  CAS  Google Scholar 

  109. Saudou F, Amara DA, Dierich A, et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 1994;265:1875–1878.

    Article  PubMed  CAS  Google Scholar 

  110. Crabbe JC, Phillips TJ, Feller DJ, et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 1996;14:98–101.

    Article  PubMed  CAS  Google Scholar 

  111. Rocha BA, Scearce-Levie K, Lucas JJ, et al. Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 1998;393:175–178.

    Article  PubMed  CAS  Google Scholar 

  112. Jenike MA. Clinical practice. Obsessive–compulsive disorder. N Engl J Med 2004;350:259–265.

    Article  PubMed  CAS  Google Scholar 

  113. Blier P, Habib R, Flament MF. Pharmacotherapies in the management of obsessive–compulsive disorder. Can J Psychiatry 2006;51:417–430.

    PubMed  Google Scholar 

  114. Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 2006;3:69–81.

    Article  PubMed  CAS  Google Scholar 

  115. Whiteside SP, Port JD, Deacon BJ, Abramowitz JS. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res 2006;146:137–147.

    Article  PubMed  Google Scholar 

  116. Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology 2005;30:1735–1740.

    Article  PubMed  CAS  Google Scholar 

  117. Coric V, Taskiran S, Pittenger C, et al. Riluzole augmentation in treatment-resistant obsessive–compulsive disorder: an open-label trial. Biol Psychiatry 2005;58:424–428.

    Article  PubMed  CAS  Google Scholar 

  118. Lafleur DL, Pittenger C, Kelmendi B, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive–compulsive disorder. Psychopharmacology (Berl) 2006;184:254–256.

    Article  CAS  Google Scholar 

  119. Lewis DA, Gonzalez-Burgos G. Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006; 12:1016–1022.

    Article  PubMed  CAS  Google Scholar 

  120. Hurko O, Ryan JL. Translational research in central nervous system drug discovery. NeuroRx 2005;2:671–682.

    Article  PubMed  Google Scholar 

  121. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000;28:53–67.

    Article  PubMed  CAS  Google Scholar 

  122. Mimmack ML, Ryan M, Baba H, et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002;99:4680–4685.

    Article  PubMed  CAS  Google Scholar 

  123. Miyakawa T, Leiter LM, Gerber DJ, et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 2003;100:8987–8992.

    Article  PubMed  CAS  Google Scholar 

  124. Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx 2006;3:117–130.

    Article  PubMed  CAS  Google Scholar 

  125. Prathikanti S, Weinberger DR. Psychiatric genetics—the new era: genetic research and some clinical implications. Br Med Bull 2005;73–74:107–122.

    Article  PubMed  Google Scholar 

  126. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999;51:593–628.

    PubMed  CAS  Google Scholar 

  127. Apud JA, Weinberger DR. Pharmacogenetic tools for the development of target-oriented cognitive-enhancing drugs. NeuroRx 2006;3:106–116.

    Article  PubMed  CAS  Google Scholar 

  128. Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 1999;156:1328–1335.

    PubMed  CAS  Google Scholar 

  129. Mueser KT, McGurk SR. Schizophrenia. Lancet 2004;363: 2063–2072.

    Google Scholar 

  130. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002;25:409–432.

    Article  PubMed  CAS  Google Scholar 

  131. Clinton SM, Meador-Woodruff JH. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 2004;69:237–253.

    Article  PubMed  Google Scholar 

  132. Wise RA, Spindler J, deWit H, Gerberg GJ. Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 1978;201:262–264.

    Article  PubMed  CAS  Google Scholar 

  133. Schultz W. Getting formal with dopamine and reward. Neuron 2002;36:241–263.

    Article  PubMed  CAS  Google Scholar 

  134. Kapur S, Agid O, Mizrahi R, Li M. How antipsychotics work-from receptors to reality. NeuroRx 2006;3:10–21.

    Article  PubMed  Google Scholar 

  135. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  136. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976;261:717–719.

    Article  PubMed  CAS  Google Scholar 

  137. Kessler RM, Ansari MS, Riccardi P, et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 2006;31:1991–2001.

    Article  PubMed  CAS  Google Scholar 

  138. Usiello A, Baik JH, Rouge-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000;408:199–203.

    Article  PubMed  CAS  Google Scholar 

  139. Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000;287:2020–2022.

    Article  PubMed  CAS  Google Scholar 

  140. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005;122:261–273.

    Article  PubMed  CAS  Google Scholar 

  141. Kapur S, Remington G. Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu Rev Med 2001;52:503–517.

    Article  PubMed  CAS  Google Scholar 

  142. Williams GV, Rao SG, Goldman-Rakic PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci 2002;22:2843–2854.

    PubMed  CAS  Google Scholar 

  143. Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 2000;31:302–312.

    Article  PubMed  CAS  Google Scholar 

  144. Marek GJ, Aghajanian GK. LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 1996;278:1373–1382.

    PubMed  CAS  Google Scholar 

  145. Meltzer HY, Park S, Kessler R. Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 1999;96:13591–13593.

    Article  PubMed  CAS  Google Scholar 

  146. Roth BL, Willins DL, Kristiansen K, Kroeze WK. Activation is hallucinogenic and antagonism is therapeutic: role of 5-HT2A receptors in atypical antipsychotic drug actions. The Neuroscientist 1999;5:254–262.

    Article  CAS  Google Scholar 

  147. De Deurwaerdere P, Spampinato U. Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 1999;73:1033–1042.

    Article  PubMed  Google Scholar 

  148. Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 2000;864:176–185.

    Article  PubMed  CAS  Google Scholar 

  149. Gobert A, Millan MJ. Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 1999;38:315–317.

    Article  PubMed  CAS  Google Scholar 

  150. Nocjar C, Roth BL, Pehek EA. Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 2002;111:163–176.

    Article  PubMed  CAS  Google Scholar 

  151. Meltzer HY, Alphs L, Green AI, et al. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT). Arch Gen Psychiatry 2003;60:82–91.

    Article  PubMed  CAS  Google Scholar 

  152. Nguyen T, Shapiro DA, George SR, et al. Discovery of a novel member of the histamine receptor family. Mol Pharmacol 2001;59:427–433.

    PubMed  CAS  Google Scholar 

  153. Davies MA, Sheffler DJ, Roth BL. Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev 2004;10:317–336.

    PubMed  CAS  Google Scholar 

  154. Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003;28:1400–1411.

    Article  PubMed  CAS  Google Scholar 

  155. Marek G, Merchant K. Developing therapeutics for schizophrenia and other psychotic disorders. NeuroRx 2005;2:579–589.

    Article  PubMed  Google Scholar 

  156. Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209–1223.

    Article  PubMed  CAS  Google Scholar 

  157. Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 2000;14:1–21.

    PubMed  CAS  Google Scholar 

  158. Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron 2003;40:881–884.

    Article  PubMed  CAS  Google Scholar 

  159. Iversen L. Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 2006;147(Suppl 1):S82–88.

    Article  CAS  Google Scholar 

  160. Lane HY, Huang CL, Wu PL, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006;60:645–649.

    Article  PubMed  CAS  Google Scholar 

  161. Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 2005;72:225–234.

    Article  PubMed  Google Scholar 

  162. Gomez-Mancilla B, Marrer E, Kehren J, et al. Central nervous system drug development: an integrative biomarker approach toward individualized medicine. NeuroRx 2005;2:683–695.

    Article  PubMed  CAS  Google Scholar 

  163. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 2004;22:245–252.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xia, Z., Roth, B.L. (2008). Novel Mechanisms of Drug Treatment in Psychiatry. In: Fatemi, S.H., Clayton, P.J. (eds) The Medical Basis of Psychiatry. Humana Press. https://doi.org/10.1007/978-1-59745-252-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-252-6_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-917-8

  • Online ISBN: 978-1-59745-252-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics