Skip to main content

Tissue Engineered Anterior Cruciate Ligament Graft

  • Chapter
Musculoskeletal Tissue Regeneration

Part of the book series: Orthopedic Biology and Medicine ((OBM))

  • 1753 Accesses

Abstract

The anterior cruciate ligament (ACL) is the most frequently ruptured ligament in the knee that is associated with functional disability. Because it lacks successful healing capabilities, it is often reconstructed. The current methods utilizing autograft and allograft tissue to reconstruct the ACL have been quite successful. However, surgeons and patients would prefer grafts without the potential for donor site morbidity (autografts) and the potential for disease transmission and unavailability (allografts). In addition, there is time necessary to shape and prepare the graft material before implantation. Tissue engineering has the potential to address some of these issues and give a more ideal graft. Trying to create a functional tissue engineered ACL graft that is available and a cost-effective, value-added alternative presents the problems and challenges of the regeneration of any tissue. The ACL presents some unique challenges ahead in developing a biological engineered tissue replacement. These unique challenges are related to its complex microanatomy, its time zero and incorporated mechanical and structural properties and its intra-articular space and intrasynovial environment. Trying to duplicate the ACL's structural and mechanical characteristics is dependent on developing, placing and properly tensioning fibers of different lengths. Its intricate macro-and microanatomy have not been duplicated to date with engineered tissue or biomaterials. The native ACL has no adjacent soft tissue, as many ligaments in the body do, that can enhance the healing process.

While biologic substitutes (naturally occurring engineered tissue) have played a major role in ACL reconstruction and serve as a source of a great deal of scientific work and precedence to build upon, regeneration of a biologic ligament outside of the human has not been clinically perfected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Fu FH, Bennett CH, Lattermann C, Ma CB. Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. Am J Sports Med 1999;27:821–830.

    PubMed  CAS  Google Scholar 

  2. 2. West RV, Harner CD. Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2005;13:197–207.

    PubMed  Google Scholar 

  3. 3. Freedman KB, D'Amato MJ, Nedeff DD, Kaz A, Bach Jr BB. Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 2003;31:2–11.

    PubMed  Google Scholar 

  4. 4. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patel-lar tendon. J Orthop Res 1986;4:162–172

    Article  PubMed  CAS  Google Scholar 

  5. 5. Bach BR Jr, Levy ME, Bojchuk J, Tradonsky S, Bush-Joseph CA, Khan NH. Single-incision endoscopic anterior cruciate ligament reconstruction using patellar tendon autograft. Minimum two-year follow-up evaluation. Am J Sports Med 1998;26:30–40.

    PubMed  Google Scholar 

  6. 6. Bach BR Jr, Tradonsky S, Bojchuk J, Levy ME, Bush-Joseph CA, Khan NH. Arthroscopically assisted anterior cruciate ligament reconstruction using patel-lar tendon autograft. Five- to nine-year follow-up evaluation. Am J Sports Med 1998;26:20–29.

    PubMed  Google Scholar 

  7. 7. West RV, Harner CD. Graft selections in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2005;13:197–207.

    PubMed  Google Scholar 

  8. 8. Schrock KB, Jackson DW. Allograft reconstruction of the anterior cruciate ligament: Basic Science. Operative Techniques in Sports Medicine 1995;3:139–147.

    Article  Google Scholar 

  9. 9. Fu FH, Jackson DW, Jamison J, Lemos MJ, Simon TM. Allograft reconstruction of the anterior cruciate ligament. In: The Anterior Cruciate Ligament: Current and Future Concepts. Editor: Douglas W. Jackson. Raven Press, Publisher, New York, NY, 1993, pp 325–338.

    Google Scholar 

  10. 10. Crawford C, Kainer M, Jernigan D, Banerjee S, Friedman C, Ahmed F, Archibald LK. Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantation. Clin Infect Dis 2005;41:195–200.

    Article  PubMed  Google Scholar 

  11. 11. Harner CD, Fu FH. The immune response to allograft ACL reconstruction. Am J Knee Surg 1993;6:45–46.

    Google Scholar 

  12. 12. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 1993;21:176–185.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Rodrigo JJ, Jackson DW, Simon TM, Muto KN. The immune response to freeze-dried bone-tendon-bone ACL allografts in humans. Am J Knee Surg 1993;6(2):47–53.

    Google Scholar 

  14. 14. Fowler PJ. Synthetic augmentation. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 339–342.

    Google Scholar 

  15. 15. McCarthy DM, Tolin BS, Schwendeman L, Friedman MC, Woo SL-Y. Prosthetic replacement of the anterior cruciate ligament. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 343–356.

    Google Scholar 

  16. 16. Ahmed AM, Burke DL, Duncan NA, Chan KH. Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. J Orthop Res 1992;10:854–867.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Haimes JL, Wroble RR, Grood ES, Noyes FR. Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med 1994;22:402–409.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Markolf KL, Wascher DC, Finerman GA. Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures. J Bone Joint Surg 1993;75A:387–394.

    Google Scholar 

  19. 19. Shapiro MS, Markolf KL, Finerman GA, Mitchell PW. The effect of section of the medial collateral ligament on force generated in the anterior cruciate ligament. J Bone Joint Surg 1991;73A:248–256.

    Google Scholar 

  20. 20. Shoemaker SC, Adams D, Daniel DM, Woo SL. Quadriceps/anterior cruciate graft interaction. An in vitro study of joint kinematics and anterior cruciate ligament graft tension. Clin Orthop 1993;294:379–390.

    PubMed  Google Scholar 

  21. 21. Wascher DC, Markolf KL, Shapiro MS, Finerman GA. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. J Bone Joint Surg 1993;75A:377–386.

    Google Scholar 

  22. 22. Amis AA, Dawkins GP. Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg 1991;73B:260–267.

    Google Scholar 

  23. 23. Arnoczky SP, Warren RF. Anatomy of the cruciate ligaments. In Feagin JA Jr, (Ed) The cruciate ligaments, 1988 Churchill Livingstone New York, 179–195.

    Google Scholar 

  24. 24. Brantigan OC, Voshell AF. The mechanics of the ligaments and menisci of the knee joint. J Bone Joint Surg 1941;23A:44–66.

    Google Scholar 

  25. 25. Furman W, Marshall JL, Girgis FG. The anterior cruciate ligament: a functional analysis based on post-mortem studies. J Bone Joint Surg 1976;58A:179–185.

    Google Scholar 

  26. 26. Fuss FK. Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. Am J Anat 1989;184:165–176.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Clin Orthop 1975;106:216–231.

    Article  PubMed  Google Scholar 

  28. 28. Kaplan EB. Some aspects of functional anatomy of the human knee joint. Clin Orthop 1962;23:18–29.

    PubMed  CAS  Google Scholar 

  29. 29. Kennedy JC, Weinberg HW, Wilson AS. The anatomy and function of the anterior cruciate ligament as determined by clinical and morphological studies. J Bone Joint Surg 1974;56A:223–235.

    Google Scholar 

  30. 30. Last RJ. Some anatomical details of the knee joint. J Bone Joint Surg [Br] 1948;30B:683–688.

    CAS  Google Scholar 

  31. 31. Norwood LA, Cross MJ. Anterior cruciate ligament: functional anatomy of its bundles in rotary instability. Am J Sports Med 1979;7:23–26.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Odensten M, Gillquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg 1985;67A:257–262.

    Google Scholar 

  33. 33. Welsh RP. Knee joint structure and function. Clin Orthop 1980;147:7–14.

    PubMed  Google Scholar 

  34. 34. Dodds JA, Arnoczky SP. Anatomy of the anterior cruciate ligament: a blueprint for repair and reconstruction. Arthroscopy 1994:10;132–139.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Hollis JM, Woo SL-Y. The estimation of anterior cruciate ligament loads in situ: indirect methods. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 85–94.

    Google Scholar 

  36. 36. O'Connor JJ, Zavatski A. Anterior cruciate ligament forces in activity. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 131–140.

    Google Scholar 

  37. 37. Hefzy MS, Grood ES. Knee motions and their relations to the function of the anterior cruciate ligament. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 75–84.

    Google Scholar 

  38. 38. Woo SL-Y, Blomstrom GL. The tensile properties of the anterior cruciate ligament as a function of age. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 53–62.

    Google Scholar 

  39. 39. Beynnon BD, Fleming BD, Pope MH, Johnson RJ. The measurement of anterior cruciate ligament strain in vivo. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 101–12.

    Google Scholar 

  40. 40. Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI. In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 1994;27:517–526.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Lewis JL, Lew WD, Markolf KL. The measurement of anterior cruciate ligament loads: direct methods. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 95–100.

    Google Scholar 

  42. 42. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 1995;23:24–34.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Kdolsky R, Kwasny O, Schabus R. Synthetic augmented repair of proximal ruptures of the anterior cruciate ligament. Long-term results of 66 patients. Clin Orthop 1993;295:183–189.

    PubMed  Google Scholar 

  44. 44. Haut RC. The mechanical and viscoelastic properties of the anterior cruciate ligament and of ACL fascicles. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 63–74.

    Google Scholar 

  45. 45. King GJ, Edwards PE, Brant R, Shrive NG, Frank CB. Intraoperative graft tensioning alters viscoelastic but not failure behaviors of rabbit medial collateral ligament autografts. J Orthop Res 1995;13:915–922.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Amiel D, Billings E, Akeson WH. Ligament structure, chemistry and physiology. In Knee Ligaments: Structure, Function, Injury and Repair 1990 Daniel DD, Akeson WH, O'Connor JJ (Eds) Raven Press New York 77–91.

    Google Scholar 

  47. 47. McDevitt CA, Marcelino J. Adhesion macromolecules of the ligament: the molecular glues in wound healing. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 179–188.

    Google Scholar 

  48. 48. Arnoczky SP, Matyas JR, Buckwalter JA, Amiel D. Anatomy of the anterior cruciate ligament. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 5–22.

    Google Scholar 

  49. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic, radio-graphic, biomechanical, and kinematic evaluation of the ACL and its two functional bundles. J Bone Joint Surg (Am), in press 2006.

    Google Scholar 

  50. 50. Zelle BA, Brucker PU, Feng MT, Fu FH.: Anatomical double-bundle anterior cruciate ligament reconstruction. Sports Med 2006;36:2:99–108.

    Article  PubMed  Google Scholar 

  51. Comparing graft options for ACL: Which offers the most benefits today? (www. orthosupersite.com) Orthop Today International March 2006;9:34.

    Google Scholar 

  52. 52. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H. Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 2006;22:240–51.

    Article  PubMed  Google Scholar 

  53. 53. Oakes BW. Collagen ultrastructure in the normal ACL and in ACL graft. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 209–217.

    Google Scholar 

  54. 54. Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1984;1:257–265.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Murphy PG, Frank C, Hart DA. The cell biology of ligaments and ligament healing. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 165–177.

    Google Scholar 

  56. 56. Woo SL, Inoue M, McGurk-Burleson E, Gomez MA. Treatment of the medial collateral ligament injury. II: Structure and function of canine knees in response to differing treatment regimens. Am J Sports Med 1987;15:22–29.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Pascher A, Steinert AF, Palmer GD. Enhanced repair of the anterior cruciate ligament by in situ gene transfer evaluation in an in vitro model. Mol Ther 2004;10:327–336.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Hefti FL, Kress A, Fasel J, Morscher EW. Healing of the transected anterior cruciate ligament in the rabbit. J Bone Joint Surg 1991;73:373–383.

    PubMed  CAS  Google Scholar 

  59. 59. Amiel D, Kleiner JB, Akeson WH. The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 1986;14:449–462.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Lane JG, Mcfadden P, Bowden K, Amiel D. The ligamentization process: a 4 year case study following ACL reconstruction with a semitendinosus graft. Arthroscopy 1993;9:149–153.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Ballock RT, Woo SL, Lyon RM, Hollis JM, Akeson WH. Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long-term histologic and biomechanical study. J Orthop Res 1989;7:474–485.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N. Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sports Med 1995;23:203–208.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Jackson DW, Lemos MJ. Autograft reconstruction of the anterior cruciate ligament: bone-patellar tendon-bone. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 291–304.

    Google Scholar 

  64. 64. Ng GY, Oakes BW, Deacon OW, Mclean ID, Lampard D. Biomechanics of patellar tendon autograft for reconstruction of the anterior cruciate ligament in the goat: three-year study. J Orthop Res 1995;13:602–608.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Beynnon BD, Johnson RJ, Fleming BC. The mechanics of anterior cruciate ligament reconstruction. In The Anterior Cruciate Ligament. Current and Future Concepts 1993 Jackson DW, Arnoczky SP, Frank CB, Woo SL-Y, Simon TM (Eds) Raven Press New York 259–272.

    Google Scholar 

  66. 66. Frank CB, Jackson DW. The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1997;79:1556–1576.

    PubMed  CAS  Google Scholar 

  67. 67. Hildebrand KA, Frank CB. Scar formation and ligament healing. Can J Surg 1998;41:425–429.

    PubMed  CAS  Google Scholar 

  68. 68. Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM. The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg 1991;73A:201–213.

    Google Scholar 

  69. 69. Kosek JC, Iben AB, Shumway NE, Angell WW. Morphology of fresh heart valve homografts. Surg 1969;66:269–274.

    CAS  Google Scholar 

  70. 70. Mohri H, Reichenbach DD, Barnes RW, Merendino KA. A biologic study in the homologous aortic valve in dogs. J Thorac Cardiovas Surg 1967;54:622–628.

    CAS  Google Scholar 

  71. 71. Mohri H, Reichenbach DD, Barnes RW, Merendino KA. Homologous aortic valve transplantation. Alterations in viable and nonviable valves. J Thorac Cardiovas Surg 1968;56:767–774.

    CAS  Google Scholar 

  72. 72. O'Brien MF, Stafford G, Gardner M, Pohlner P, McGiffin D, Johnston N, Brosnan A, Duffy P. The viable cryopreserved allograft aortic valve. J Cardiac Surg 1987;2(Suppl):153–167.

    Google Scholar 

  73. 73. Jackson DW, Simon TM, Kurzweil PR, Rosen MA. DNA probe analysis of fresh allograft cells after ACL reconstruction. Trans Orthop Res Soc 1991;16:184.

    Google Scholar 

  74. 74. Jackson DW, Simon TM, Kurzweil PR, Rosen MA. Survival of cells after intra-articular transplantation of fresh allografts of the patellar and anterior cruciate ligament: DNA probe analysis in a goat model. J Bone Joint Surg 1992;74A:112–118.

    Google Scholar 

  75. 75. Jackson DW, Simon TM, Lowery W, Gendler E. Anterior cruciate ligament reconstruction using collagen matrix derived from demineralized bone in a goat model. Trans Orthop Res Soc 1995;20:2:634.

    Google Scholar 

  76. 76. Jackson DW, Simon TM, Lowery W, Gendler E. Biologic remodeling after anterior cruciate ligament reconstruction using a collagen matrix derived from demineral-ized bone: An experimental study in the goat model. Am J Sports Med 1996; 24:405–414.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Hart DA, Natsu-ume T, Sciore P, Tasevski V, Frank CB, Shrive NG, Pandalai SG. Mechanobiology: Similarities and differences between in vivo and in vitro analysis at the functional and molecular levels. Recent Res Devel Biophys Biochem. 2002;2:157–177.

    Google Scholar 

  78. 78. SE Sakiyama-Elber, Hubbell JA. Functional biomaterials: Design of novel bioma-terials. Ann Rev Materials Res 2001;31:183–201.

    Article  Google Scholar 

  79. 79. Ahn C, Kim JY, Lee BC, Kang SK, Lee JR, Hwang WS. The past, present, and future of xenotransplantation. Yonsei Med J 2004;45:1017–1024.

    Google Scholar 

  80. 80. Cascalho M, Platt JL. The immunologic barriers to replacing damaged organs. Curr Top Microbiol Immunol 2003;278:1–21.

    Google Scholar 

  81. 81. Kaiser J. Xenotransplantation: Cloned pigs may help overcome rejection. Science 2002; 295:25–27.

    Article  PubMed  Google Scholar 

  82. 82. Ge Z, Yang F, Goh JC, Ramakrishna S, Lee EH. Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res 2006;77A:639–652.

    Article  CAS  Google Scholar 

  83. 83. Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: A review of current strategies. Arthroscopy 2006;22:4:441–451.

    Article  PubMed  Google Scholar 

  84. 84. Hutmacher DW, Goh C, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 2001;30:183–191.

    PubMed  CAS  Google Scholar 

  85. 85. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 1995;29:1363–1371.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 1998;16:414–420.

    Article  PubMed  CAS  Google Scholar 

  87. 87. Caruso AB, Dunn MG. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. J Biomed Mater Res A 2005;73:388–397.

    PubMed  Google Scholar 

  88. 88. Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997;18:95–105.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23:4131–4141.

    Article  PubMed  CAS  Google Scholar 

  90. 90. Chen J, Altman GH, V. Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 2003;67:559–570.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Ann Rev Biomed Eng 2004;6:131–156.

    Article  CAS  Google Scholar 

  92. 92. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J 2002;16:270–272.

    PubMed  CAS  Google Scholar 

  93. 93. Dahlstedt L, Dalen N, Jonsson U. Goretex prosthetic ligament vs. Kennedy ligament augmentation device in anterior cruciate ligament reconstruction. A prospective randomized 3-year follow-up of 41 cases. Acta Orthop Scand 1990;61:217–224.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Dahlstedt L, Dalen N, Jonsson U, Adolphson P. Cruciate ligament prosthesis vs. augmentation. A randomized, prospective 5-year follow-up of 41 cases. Acta Orthop Scand 1993;64:431–433.

    Article  PubMed  CAS  Google Scholar 

  95. 95. Richmond JC, Manseau CJ, Patz R, McConville O. Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med 1992;20:24–28.

    Article  PubMed  CAS  Google Scholar 

  96. 96. Muren O, Dahlstedt L, Dalen N. Reconstruction of old anterior cruciate ligament injuries. No difference between the Kennedy LAD-method and traditional patellar tendon graft in a prospective randomized study of 40 patients with 4-year follow-up. Acta Orthop Scand 1995;66:118–122.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Noyes FR, Barber SD. The effect of a ligament-augmentation device on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg 1992;74A:960–973.

    Google Scholar 

  98. 98. Barrett GR, Line LL Jr, Shelton WR, Manning JO, Phelps R. The Dacron ligament prosthesis in anterior cruciate ligament reconstruction. A four-year review. Am J Sports Med 1993;21:367–373.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Dandy DJ, Gray AJ. Anterior cruciate ligament reconstruction with the Leeds-Keio prosthesis plus extra-articular tenodesis. Results after six years. J Bone Joint Surg 1994;76B:193–197.

    Google Scholar 

  100. 100. Engstrom B, Wredmark T, Westblad P. Patellar tendon or Leeds-Keio graft in the surgical treatment of anterior cruciate ligament ruptures. Intermediate results. Clin Orthop 1993;295:190–197.

    PubMed  Google Scholar 

  101. 101. Paulos LE, Butler DL, Noyes FR, Grood ES. Intra-articular cruciate reconstruction: II. Replacement with vascularized patellar tendon. Clin Orthop Rel Res 1983;172:78–84.

    Google Scholar 

  102. 102. Denny HR, Goodship AE. Replacement of the anterior cruciate ligament with carbon fibre in the dog. J Small Anim Prac 1980;21:279–286.

    Article  CAS  Google Scholar 

  103. 103. Goodship AE, Brown PN, Silver IA, Jenkins D, Kirby M. Use of carbon fibre for tendon repair. Vet Rec 1978;102:322.

    Article  PubMed  CAS  Google Scholar 

  104. 104. Goodship AE, Brown PN, Yeats JJ, Jenkins DH, Silver IA. An assessment of filamentous carbon fibre for the treatment of tendon injury in the horse. Vet Rec 1980:106:217–221.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Demaio M, Noyes FR, Mangine RE. Principles for aggressive rehabilitation after reconstruction of the anterior cruciate ligament. Orthopedics 1992;15:385–392.

    PubMed  CAS  Google Scholar 

  106. 106. Kurosawa H, Yasuda K, Yamakoshi K, Kamiya A, Kaneda K. An experimental evaluation of isometric placement for extra-articular reconstructions of the anterior cruciate ligament. Am J Sports Med 1991;19:384–388.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Paulos LE, Rosenberg TD, Grewe SR, Tearse DS, Beck CL. The GORE-TEX anterior cruciate ligament prosthesis. A long-term follow-up. Am J Sports Med 1992;20:246–252.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Woods GA, Indelicato PA, Prevot TJ. The Gore-Tex anterior cruciate ligament prosthesis. Two versus three year results. Am J Sports Med 1991;19:48–55.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Migliaresi C, Fambri L, Cohn D. A study on the in vitro degradation of poly(lactic acid). J Biomater Sci Polym Ed 1994;5:591–606.

    Article  PubMed  CAS  Google Scholar 

  110. 110. Laitinen 0, Pohjonen T, Tormala P, Saarelainen K, Vasenius J, Rokkanen P, Vainionpaa S. Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 1993;112:270–274.

    Article  PubMed  CAS  Google Scholar 

  111. 111. Meaney Murray M, Rice K, Wright RJ, Spector M. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res 2003;21:238–244.

    Article  PubMed  CAS  Google Scholar 

  112. 112. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 1997;5:189–194.

    Article  PubMed  CAS  Google Scholar 

  113. 113. DesRosiers EA, Yahia L, Rivard CH. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res 1996;14:200–208.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Moreau JE, Chen J, Bramono DS. Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res 2005;23:164–174.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Griensven MV. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: Potential implications for tissue engineering of tendons and ligaments. Tissue Eng 2005;11:41–49.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Bramono DS, Richmond JC, Weitzel PP Chernoff H, Martin I, Volloch V, Jakuba CM, Diaz F, Gandhi JS, Kaplan DL, Altman GH. Characterization of transcript levels for matrix molecules and proteases in ruptured human anterior cruciate ligaments, Connect Tissue Res 2005;46:53–65.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Jackson DW, Simon TM. Reduced A/P translation associated with adaptive changes in the meniscus in the failed ACL reconstruction goat model. Trans Orthop Res Soc 1997;22:1:100.

    Google Scholar 

  118. 118. Proctor CS, Jackson DW, Simon TM. Characterization of the replacement tissue after harvesting the central one-third of the patellar ligament: an experimental study in a goat model. J Bone Joint Surg 1997;79A:997–1006.

    Google Scholar 

  119. 119. Goulet F, Rancourt D, Cloutier R. Torn ACL: a new bioengineered substitute brought from the laboratory to the knee joint. Applied Bionics Biomech. 2004;1:115–121.

    Article  Google Scholar 

  120. 120. Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S. Kinematics of the ACL deficient canine knee during gait: serial changes over two years. J Orthop Res. 2004;22:931–941.

    Article  PubMed  Google Scholar 

  121. 121. Lopez MJ, Kunz D, Vanderby R Jr, Heisey D, Bogdanske J, Markel MD. A comparison of joint stability between anterior cruciate ligament intact and deficient knees: A new canine model of anterior cruciate ligament disruption. J Orthop Res 2003;21:224–230.

    Article  PubMed  Google Scholar 

  122. 122. Xerogeanes JW, Fox RJ, Takeda Y, Kim HS, Ishibashi Y, Carlin GJ, Woo SL. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 1998;26:345–352.

    Article  PubMed  CAS  Google Scholar 

  123. 123. An HY, Friedman RJ. Animal selections in orthopaedic research. In: An HY, Friedman RJ, editors. Animal Models in Orthop Res. New York: CRC; 1999. 39–58.

    Google Scholar 

  124. 124. Venter JC: The Medical Futures Forum: The Genome On Main Street. The Pfizer J 1998;2:13–25.

    Google Scholar 

  125. 125. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–1270.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC, Vunjak-Novakovic G. Advanced bioreactor with controlled application of multidimensional strain for tissue engineering. J Biomech Eng 2002;124:742–749.

    Article  PubMed  Google Scholar 

  127. Dunn MG. Anterior cruciate ligament prostheses. In: Pahey T, editor. Encyclopedia of Sports Med and Science. 2004. Available at http://www.sportsci.org/encyc/index.html.

  128. 128. Rittmeister M, Noble PC, Lintner DM, Alexander JW, Conditt M, Kohl HW III. The effect of strand configuration on the tensile properties of quadrupled tendon grafts. Arthroscopy 2002;18:194–200.

    Article  PubMed  Google Scholar 

  129. 129. Ge Z, Goh J, Lee EH. The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 2006;14:763–773.

    Article  Google Scholar 

  130. 130. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials 2005;26:1523–1532.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simon, T.M., Jackson, D.W. (2008). Tissue Engineered Anterior Cruciate Ligament Graft. In: Pietrzak, W.S. (eds) Musculoskeletal Tissue Regeneration. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-239-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-239-7_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-909-3

  • Online ISBN: 978-1-59745-239-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics