Skip to main content

Tissue Engineering of the Meniscus

  • Chapter
Musculoskeletal Tissue Regeneration

Part of the book series: Orthopedic Biology and Medicine ((OBM))

  • 2166 Accesses

Abstract

This chapter addresses questions related to tissue engineering of an entirely new meniscus. In particular the type and geometry of temporary scaffolds, the selection of an optimal cell type, the source of the cells and the growth factors that can be used to stimulate differentiation of cells into fibrocartilage, may all determine the final success.

Three approaches can be chosen with respect to the scaffold types used. Natural scaffolds based on tissues can be used. The disadvantage of such scaffolds is the lack of optimal mechanical properties, which are obligatory, in the highly loaded environment of the knee joint. Secondly, natural scaffolds, reconstituted from isolated naturally occurring tissue matrix components, could be an attractive alternative. An advantage is that custom-made scaffolds can be tailored for optimal tissue ingrowth, proliferation and remodelling of tissue. Thirdly, synthetic scaffolds may be fine-tuned to mechanical requirements. They have the advantage that scaffolds can be produced with optimal mechanical properties.

With respect to cells, most research so far has been focussed on autologous meniscus cells. However, their availability, particularly in clinical situations, will be limited. Therefore, research should be stimulated to investigate the suitability of other cell sources for the creation of meniscus tissue. Bone marrow stroma cells could be useful since it is well-known that they can differentiate into bone and cartilage and may possibly have paracrine effects on differentiated cell types.

With respect to growth factors, transforming growth factor-β (TGF-β) could be a suitable growth factor to stimulate cells into a fibroblastic phenotype, but unwanted effects of TGF-β introduced into a joint environment should then be prevented.

In conclusion, a meniscus seems a simple structure, but its location in a highly loaded environment makes it a challenging structure for tissue engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Ghosh P, Taylor TK. The knee joint meniscus. A fibrocartilage of some distinction. Clin Orthop 1987 Nov;224:52–63.

    PubMed  Google Scholar 

  2. 2. McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop 1990 Mar;252:8–18.

    PubMed  Google Scholar 

  3. 3. Sweigart MA, Athanasiou KA. Toward tissue engineering of the knee meniscus. Tissue Eng 2001 Apr;7(2):111–29.

    PubMed  CAS  Google Scholar 

  4. 4. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop 1975;109:184–92.

    PubMed  Google Scholar 

  5. 5. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop 1990 Mar;252:19–31.

    PubMed  Google Scholar 

  6. 6. Arnoczky SP. Breakout session 4: Meniscus. Clin Orthop 1999 Oct;367:S293–S295.

    Google Scholar 

  7. 7. DeHaven KE. The role of the meniscus. In: Ewing JW, editor. Articular cartilage and knee joint function: Basic science and arthroscopy.New York: Raven Press, Ltd.; 1990. p. 103–15.

    Google Scholar 

  8. 8. Setton LA, Guilak F, Hsu EW, Vail TP. Biomechanical factors in tissue engineered meniscal repair. Clin Orthop 1999 Oct;367:S254–S272.

    PubMed  Google Scholar 

  9. 9. Kambic HE, McDevitt CA. Spatial organization of types I and II collagen in the canine meniscus. J Orthop Res 2005 Jan;23(1):142–9.

    PubMed  CAS  Google Scholar 

  10. 10. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med 1982 Mar;10(2):90–5.

    PubMed  CAS  Google Scholar 

  11. 11. Brindle T, Nyland J, Johnson DL. The Meniscus: Review of Basic Principles With Application to Surgery and Rehabilitation. J Athl Train 2001 Apr;36(2):160–9.

    PubMed  CAS  Google Scholar 

  12. 12. Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl) 1998 Apr;197(4):317–24.

    CAS  Google Scholar 

  13. 13. Ververidis AN, Verettas DA, Kazakos KJ, Tilkeridis CE, Chatzipapas CN. Meniscal bucket handle tears: a retrospective study of arthroscopy and the relation to MRI. Knee Surg Sports Traumatol Arthrosc 2006 Apr;14(4):343–9.

    PubMed  CAS  Google Scholar 

  14. 14. Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy 2005 Nov;21(11):1366–9.

    PubMed  Google Scholar 

  15. 15. Burks RT, Metcalf MH, Metcalf RW. Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy 1997 Dec;13(6):673–9.

    PubMed  CAS  Google Scholar 

  16. 16. Allen PR, Denham RA, Swan AV. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. J Bone Joint Surg Br 1984 Nov;66(5):666–71.

    PubMed  CAS  Google Scholar 

  17. 17. Appel H. Late results after meniscectomy in the knee joint. A clinical and roentgenologic follow-up investigation. Acta Orthop Scand Suppl 1970;133:1–111.

    PubMed  CAS  Google Scholar 

  18. 18. Hede A, Svalastoga E, Reimann I. Articular cartilage changes following meniscal lesions. Repair and meniscectomy studied in the rabbit knee. Acta Orthop Scand 1991 Aug;62(4):319–22.

    PubMed  CAS  Google Scholar 

  19. 19. Cox JS, Nye CE, Schaefer WW, Woodstein IJ. The degenerative effects of partial and total resection of the medial meniscus in dogs' knees. Clin Orthop 1975;109:178–83.

    PubMed  Google Scholar 

  20. 20. Maletius W, Messner K. The effect of partial meniscectomy on the long-term prognosis of knees with localized, severe chondral damage. A twelve- to fifteen-year followup. Am J Sports Med 1996 May;24(3):258–62.

    PubMed  CAS  Google Scholar 

  21. 21. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am 1988 Sep;70(8):1209–17.

    PubMed  CAS  Google Scholar 

  22. 22. Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 2004 Sep;50(9):2811–9.

    PubMed  CAS  Google Scholar 

  23. 23. Farng E, Sherman O. Meniscal repair devices: a clinical and biomechanical literature review. Arthroscopy 2004 Mar;20(3):273–86.

    PubMed  Google Scholar 

  24. 24. Miller MD, Kline AJ, Jepsen KG. “All-inside” meniscal repair devices: an experimental study in the goat model. Am J Sports Med 2004 Jun;32(4):858–62.

    PubMed  Google Scholar 

  25. 25. Kurzweil PR, Friedman MJ. Meniscus: Resection, repair, and replacement. Arthroscopy 2002 Feb;18(2 Suppl 1):33–9.

    PubMed  Google Scholar 

  26. 26. Lee GP, Diduch DR. Deteriorating outcomes after meniscal repair using the Meniscus Arrow in knees undergoing concurrent anterior cruciate ligament reconstruction: increased failure rate with long-term follow-up. Am J Sports Med 2005 Aug;33(8):1138–41.

    Google Scholar 

  27. 27. Sethi PM, Cooper A, Jokl P. Technical tips in orthopaedics: meniscal repair with use of an in situ fibrin clot. Arthroscopy 2003 May;19(5):E44.

    PubMed  Google Scholar 

  28. 28. Bhargava MM, Hidaka C, Hannafin JA, Doty S, Warren RF. Effects of hepatocyte growth factor and platelet-derived growth factor on the repair of meniscal defects in vitro. In Vitro Cell Dev Biol Anim 2005 Sep;41(8–9):305–10.

    PubMed  CAS  Google Scholar 

  29. 29. Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage 2005 Jul;13(7):548–60.

    PubMed  CAS  Google Scholar 

  30. 30. Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA. The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 1999 Sep;27(5):636–43.

    PubMed  CAS  Google Scholar 

  31. 31. Petersen W, Pufe T, Starke C, Fuchs T, Kopf S, Raschke M, et al. Locally applied angiogenic factors–a new therapeutic tool for meniscal repair. Ann Anat 2005 Nov;187(5–6):509–19.

    PubMed  CAS  Google Scholar 

  32. 32. Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M. Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat 2005 Nov;187(5–6):473–85.

    PubMed  CAS  Google Scholar 

  33. 33. Stoop R, van der Kraan PM, Buma P, Hollander AP, Poole AR, van den Berg WB. Denaturation of type II collagen in articular cartilage in experimental murine arthritis. Evidence for collagen degradation in both reversible and irreversible cartilage damage. J Pathol 1999 Jul;188(3):329–37.

    PubMed  CAS  Google Scholar 

  34. 34. Stoop R, Buma P, van der Kraan PM, Hollander AP, Clark-Billinghurst R, Robin-Poole A, et al. Differences in type II collagen degradation between peripheral and central cartilage of rat stifle joints after cranial cruciate ligament transection. Arthritis Rheum 2000 Sep;43(9):2121–31.

    PubMed  CAS  Google Scholar 

  35. 35. Goto H, Shuler FD, Lamsam C, Moller HD, Niyibizi C, Fu FH, et al. Transfer of lacZ marker gene to the meniscus. J Bone Joint Surg Am 1999 Jul;81(7):918–25.

    PubMed  CAS  Google Scholar 

  36. 36. Martinek V, Usas A, Pelinkovic D, Robbins P, Fu FH, Huard J. Genetic engineering of meniscal allografts. Tissue Eng 2002 Feb;8(1):107–17.

    PubMed  CAS  Google Scholar 

  37. 37. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthritis Cartilage 2000 Jul;8(4):266–71.

    PubMed  CAS  Google Scholar 

  38. 38. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS, et al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng 2002 Feb;8(1):93–105.

    PubMed  CAS  Google Scholar 

  39. 39. Gao JZ. [Experimental study on healing of old tear in the avascular portion of menisci in dog. Zhonghua Wai Ke Za Zhi 1990 Dec;28(12):726–9, 782.

    PubMed  CAS  Google Scholar 

  40. Arnoczky SP. Building a meniscus. Biologic considerations. Clin Orthop Relat Res 1999 Oct;(367 Suppl):S244–S253.

    Google Scholar 

  41. 41. Buma P, Ramrattan NN, van Tienen TG, Veth RP. Tissue engineering of the meniscus. Biomaterials 2004 Apr;25(9):1523–32.

    PubMed  CAS  Google Scholar 

  42. 42. Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop 1999 Oct;367:S281–S292.

    PubMed  Google Scholar 

  43. 43. Stone KR, Rodkey WG, Webber RJ, McKinney L, Steadman JR. Future directions. Collagen-based prostheses for meniscal regeneration. Clin Orthop 1990 Mar;252:129–35.

    PubMed  Google Scholar 

  44. 44. Stone KR, Rodkey WG, Webber R, McKinney L, Steadman JR. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med 1992 Mar;20(2):104–11.

    PubMed  CAS  Google Scholar 

  45. 45. van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van BH, van der Kraan PM, et al. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 2001 Sep;22(17):2359–69.

    PubMed  Google Scholar 

  46. 46. Buma P, Pieper JS, vanTienen T., van Susante JL, van der Kraan PM, Veerkamp JH, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects–a study in rabbits. Biomaterials 2003 Aug;24(19):3255–63.

    PubMed  CAS  Google Scholar 

  47. 47. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996 May;78(5):721–33.

    PubMed  CAS  Google Scholar 

  48. 48. Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 2006 May;126(4):228–34.

    PubMed  CAS  Google Scholar 

  49. 49. Reguzzoni M, Manelli A, Ronga M, Raspanti M, Grassi FA. Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B Appl Biomater 2005 Aug;74(2):808–16.

    PubMed  Google Scholar 

  50. 50. Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 2005 May;21(5):515–25.

    PubMed  Google Scholar 

  51. Zaffagnini S, Giordano G, Vascellari A, Bruni D, Neri MP, Iacono F, et al. Arthroscopic collagen meniscus implant results at 6 to 8 years follow up. Knee Surg Sports Traumatol Arthrosc 2006 Jul 15.

    Google Scholar 

  52. 52. Alhalki MM, Howell SM, Hull ML. How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am J Sports Med 1999 May;27(3):320–8.

    PubMed  CAS  Google Scholar 

  53. 53. Aagaard H, Jorgensen U, Bojsen MF. Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc 1999;7(3):184–91.

    PubMed  CAS  Google Scholar 

  54. 54. Rijk PC, de Rooy TP, Coerkamp EG, Bernoski FP, Van Noorden CJ. Radiographic evaluation of the knee joint after meniscal allograft transplantation. An experimental study in rabbits. Knee Surg Sports Traumatol Arthrosc 2002 Jul;10(4):241–6.

    PubMed  Google Scholar 

  55. 55. Rijk PC, Van Eck-Smit BL, Van Noorden CJ. Scintigraphic assessment of rabbit knee joints after meniscal allograft transplantation. Arthroscopy 2003 May;19(5):506–10.

    PubMed  Google Scholar 

  56. 56. Alhalki MM, Hull ML, Howell SM. Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am J Sports Med 2000 May;28(3):370–6.

    PubMed  CAS  Google Scholar 

  57. 57. Heijkants RG, Calck RV, van Tienen TG, de Groot JH, Buma P, Pennings AJ, et al. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(epsilon-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials 2005 Jul;26(20):4219–28.

    PubMed  CAS  Google Scholar 

  58. 58. Klompmaker J, Jansen HWB, Veth RPH, Nielsen HKL, de Groot JH, Pennings AJ. Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clinical Materials 1993;14:1–11.

    PubMed  CAS  Google Scholar 

  59. 59. Moroni L, Poort G, Van KF, de W, Jr., van Blitterswijk CA. Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: an experimental and numerical analysis. J Biomed Mater Res A 2006 Sep 1;78(3):605–14.

    PubMed  CAS  Google Scholar 

  60. 60. Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, et al. Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 2006 Feb;76(2):389–96.

    PubMed  CAS  Google Scholar 

  61. 61. Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 2006 Jan;34(1):64–71.

    PubMed  Google Scholar 

  62. 62. Klompmaker J, Veth RP, Jansen HW, Nielsen HK, de Groot JH, Pennings AJ, et al. Meniscal repair by fibrocartilage in the dog: characterization of the repair tissue and the role of vascularity. Biomaterials 1996 Sep;17(17):1685–91.

    PubMed  CAS  Google Scholar 

  63. 63. Tienen TG, Heijkants RG, Buma P, de Groot JH, Pennings AJ, Veth RP. A porous polymer scaffold for meniscal lesion repair–a study in dogs. Biomaterials 2003 Jun;24(14):2541–8.

    PubMed  CAS  Google Scholar 

  64. 64. Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991 May;113(2):143–51.

    PubMed  CAS  Google Scholar 

  65. 65. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997 Aug;100(2):297–302.

    PubMed  CAS  Google Scholar 

  66. 66. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 1988 Jan;23(1 Pt 2):3–9.

    PubMed  CAS  Google Scholar 

  67. 67. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 2006 Oct;14(10):1056–65.

    PubMed  CAS  Google Scholar 

  68. 68. Kang SW, Son SM, Lee JS, Lee ES, Lee KY, Park SG, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscec-tomy model. J Biomed Mater Res A 2006 Jun 15;77(4):659–71.

    PubMed  Google Scholar 

  69. 69. Hellio Le Graverand MP, Reno C, Hart DA. Gene expression in menisci from the knees of skeletally immature and mature female rabbits. J Orthop Res 1999 Sep;17(5):738–44.

    PubMed  CAS  Google Scholar 

  70. 70. Webber RJ, Zitaglio T, Hough AJ, Jr. In vitro cell proliferation and proteogly-can synthesis of rabbit meniscal fibrochondrocytes as a function of age and sex. Arthritis Rheum 1986 Aug;29(8):1010–6.

    PubMed  CAS  Google Scholar 

  71. 71. Webber RJ, Zitaglio T, Hough AJ, Jr. Serum-free culture of rabbit meniscal fibrochondrocytes: proliferative response. J Orthop Res 1988;6(1):13–23.

    PubMed  CAS  Google Scholar 

  72. 72. Webber RJ, York JL, Vanderschilden JL, Hough-AJ J. An organ culture model for assaying wound repair of the fibrocartilaginous knee joint meniscus. Am J Sports Med 1989 May;17(3):393–400.

    PubMed  CAS  Google Scholar 

  73. 73. Webber RJ. In vitro culture of meniscal tissue. Clin Orthop 1990 Mar;252:114–20.

    PubMed  Google Scholar 

  74. 74. Hoberg M, Uzunmehmetoglu G, Sabic L, Reese S, Aicher WK, Rudert M. [Characterisation of human meniscus cell. Z Orthop Ihre Grenzgeb 2006 Mar;144(2):172–8.

    PubMed  CAS  Google Scholar 

  75. Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 2001 Oct;(391 Suppl):S208–S218.

    Google Scholar 

  76. 76. Tanaka T, Fujii K, Kumagae Y. Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc 1999;7(2):75–80.

    PubMed  CAS  Google Scholar 

  77. 77. Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 1995 Jun;3(2):127–38.

    PubMed  CAS  Google Scholar 

  78. 78. Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med 2004 Jun;32(4):915–20.

    PubMed  Google Scholar 

  79. 79. Tumia NS, Johnstone AJ. Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J Bone Joint Surg Br 2004 Sep;86(7):1077–81.

    PubMed  CAS  Google Scholar 

  80. 80. Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 2005 Jul;11(7–8):1141–8.

    PubMed  CAS  Google Scholar 

  81. 81. Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 2005 Jul;11(7–8):1141–8.

    PubMed  CAS  Google Scholar 

  82. 82. Adesida AB, Grady LM, Khan WS, Hardingham TE. The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Res Ther 2006;8(3):R61.

    PubMed  Google Scholar 

  83. 83. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, et al. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraar-ticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 2006 Dec;14(12):1307–14.

    PubMed  Google Scholar 

  84. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006 Apr 17.

    Google Scholar 

  85. 85. Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng 2006 Apr;12(4):969–79.

    PubMed  CAS  Google Scholar 

  86. 86. Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, et al. Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc 1997 Feb;29(1–2):986–8.

    PubMed  CAS  Google Scholar 

  87. 87. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 1999 Apr;20(8):701–9.

    PubMed  CAS  Google Scholar 

  88. 88. Mueller SM, Schneider TO, Shortkroff S, Breinan HA, Spector M. alpha-smooth muscle actin and contractile behavior of bovine meniscus cells seeded in type I and type II collagen-GAG matrices. J Biomed Mater Res 1999 Jun 5;45(3):157–66.

    PubMed  CAS  Google Scholar 

  89. 89. Zaleskas JM, Kinner B, Freyman TM, Yannas IV, Gibson LJ, Spector M. Growth factor regulation of smooth muscle actin expression and contraction of human articular chondrocytes and meniscal cells in a collagen-GAG matrix. Exp Cell Res 2001 Oct 15;270(1):21–31.

    PubMed  CAS  Google Scholar 

  90. 90. Kambic HE, Futani H, McDevitt CA. Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen 2000 Nov;8(6):554–61.

    PubMed  CAS  Google Scholar 

  91. 91. Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res 2005 Sep;23(5):1184–90.

    PubMed  CAS  Google Scholar 

  92. 92. Weinand C, Peretti GM, Adams SB, Jr., Randolph MA, Savvidis E, Gill TJ. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg 2006 Nov;126(9):599–605.

    PubMed  Google Scholar 

  93. 93. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol 2006 Jun;290(6):C1610–C1615.

    PubMed  CAS  Google Scholar 

  94. 94. Deschner J, Wypasek E, Ferretti M, Rath B, Anghelina M, Agarwal S. Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus. J Biomech 2006;39(10):1796–803.

    PubMed  Google Scholar 

  95. 95. Hu JC, Athanasiou KA. The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng 2006 May;12(5):1337–44.

    PubMed  CAS  Google Scholar 

  96. Hu JC, Athanasiou KA. The Effects of Intermittent Hydrostatic Pressure on Self-Assembled Articular Cartilage Constructs. Tissue Eng 2006 May 1.

    Google Scholar 

  97. 97. AufderHeide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng 2005 Jul;11(7/8):1095–104.

    PubMed  CAS  Google Scholar 

  98. 98. van Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Poole AR, Veth RP, et al. Presence and mechanism of knee articular cartilage degeneration after meniscal reconstruction in dogs. Osteoarthritis Cartilage 2003 Jan;11(1):78–84.

    PubMed  Google Scholar 

  99. 99. Messner K, Kohn D, Verdonk R. Future research in meniscal replacement. Scand J Med Sci Sports 1999 Jun;9(3):181–3.

    PubMed  CAS  Google Scholar 

  100. 100. ampen A, et al. Prosthetic replacement of the medial meniscus in cadaveric knees: does the prosthesis mimic the functional behavior of the native meniscus? Am J Sports Med 2004 Jul;32(5):1182–8.

    Google Scholar 

  101. 101. Kobayashi K, Amiel M, Harwood FL, Healey RM, Sonoda M, Moriya H, et al. The long-term effects of hyaluronan during development of osteoarthritis following partial meniscectomy in a rabbit model. Osteoarthritis Cartilage 2000 Sep;8(5): 359–65.

    PubMed  CAS  Google Scholar 

  102. 102. Han F, Ishiguro N, Ito T, Sakai T, Iwata H. Effects of sodium hyaluronate on experimental osteoarthritis in rabbit knee joints. Nagoya J Med Sci 1999 Nov;62(3–4):115–26.

    PubMed  CAS  Google Scholar 

  103. 103. Luo Y, Prestwich GD. Hyaluronic acid-N-hydroxysuccinimide: a useful intermediate for bioconjugation. Bioconjug Chem 2001 Nov;12(6):1085–8.

    PubMed  CAS  Google Scholar 

  104. 104. Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 2002 Mar;23(6):1471–8.

    PubMed  CAS  Google Scholar 

  105. 105. Gomes ME, Reis RL, Cunha AM, Blitterswijk CA, de Bruijn JD. Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials 2001 Jul;22(13):1911–7.

    PubMed  CAS  Google Scholar 

  106. 106. Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 2001 Nov;80(11):2025–9.

    PubMed  CAS  Google Scholar 

  107. 107. Itoh D, Yoneda S, Kuroda S, Kondo H, Umezawa A, Ohya K, et al. Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. J Biomed Mater Res 2002 Nov;62(2):292–8.

    PubMed  CAS  Google Scholar 

  108. 108. Ibarra C, Koski JA, Warren RF. Tissue engineering meniscus: cells and matrix. Orthop Clin North Am 2000 Jul;31(3):411–8.

    PubMed  CAS  Google Scholar 

  109. 109. Stoop R, Buma P, van der Kraan PM, Hollander AP, Billinghurst RC, Meijers TH, et al. Type II collagen degradation in articular cartilage fibrillation after anterior cruciate ligament transection in rats. Osteoarthritis Cartilage 2001 May;9(4):308–15.

    PubMed  CAS  Google Scholar 

  110. 110. van de Breevaart BJ, In der Maur CD, Bos PK, Feenstra L, Verhaar JA, Weinans H, et al. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Ther 2004;6(5): R469–R476.

    Google Scholar 

  111. 111. Bos PK, DeGroot J, Budde M, Verhaar JA, van Osch GJ. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum 2002 Apr;46(4):976–85.

    PubMed  CAS  Google Scholar 

  112. 112. Rodkey JG, Steadman JR, Li S-T. Collagen scaffolds: A new method to preserve and restore the severely injured meniscus. Sports Medicine and Arthroscopy Review 2006;7:63–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Buma, P., Meel, M.v., Tienen, T.G., Veth, R.P. (2008). Tissue Engineering of the Meniscus. In: Pietrzak, W.S. (eds) Musculoskeletal Tissue Regeneration. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-239-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-239-7_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-909-3

  • Online ISBN: 978-1-59745-239-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics