Skip to main content

Biological Approaches to Spinal Fusion

  • Chapter
Musculoskeletal Tissue Regeneration

Part of the book series: Orthopedic Biology and Medicine ((OBM))

Abstract

Bone grafting procedures are frequently performed for spinal applications in an attempt to promote successful arthrodesis. Autograft remains the gold standard grafting material. However, due to relatively limited supply and the morbidity associated with procurement of autograft, there has been a great deal of interest in developing alternative bone graft materials. Allograft and ceramic preparations are osteoconductive matrices that support bone formation, but these materials exhibit minimal osteoinductive potential. Recent research efforts have focused specifi cally on osteoinductive substances such as demineralized bone matrices, recombinant human bone morphogenetic proteins and autologous bone marrow aspirates. Since none of these materials deliver all of the elements required for bone formation when implanted alone, composite grafts, consisting of osteoinductive factors combined with an osteoconductive carrier, may prove to be more effective in stimulating spinal fusion than any single graft substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Vaccaro AR, Anderson DG, Patel T, et al. Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine 2005;30:2709–16.

    Article  PubMed  Google Scholar 

  2. 2. Vaccaro AR, Patel T, Fischgrund J, et al. A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 2004;29:1885–92.

    Article  PubMed  Google Scholar 

  3. 3. Zdeblick TA. A prospective, randomized study of lumbar fusion. Preliminary results. Spine 1993;18:983–91.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Chen WJ, Tsai TT, Chen LH, et al. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine 2005;30:2293–7.

    Article  PubMed  Google Scholar 

  5. 5. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am 1999;30:685–98.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Madan SS, Harley JM, Boeree NR. Anterior lumbar interbody fusion: does stable anterior fixation matter? Eur Spine J 2003;12:386–92.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Mutoh N, Shinomiya K, Furuya K, et al. Pseudarthrosis and delayed union after anterior cervical fusion. Int Orthop 1993;17:286–9.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine 1984;9:667–71.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Samartzis D, Shen FH, Lyon C, et al. Does rigid instrumentation increase the fusion rate in one-level anterior cervical discectomy and fusion? Spine J 2004;4:636–43.

    Article  PubMed  Google Scholar 

  10. 10. Connolly PJ, Esses SI, Kostuik JP. Anterior cervical fusion: outcome analysis of patients fused with and without anterior cervical plates. J Spinal Disord 1996;9:202–6.

    PubMed  CAS  Google Scholar 

  11. Urist M. Bone and Bone Transplants. Philadelphia: WB Saunders, 1980.

    Google Scholar 

  12. 12. Brown CW, Orme TJ, Richardson HD. The rate of pseudarthrosis (surgical nonunion) in patients who are smokers and patients who are nonsmokers: a comparison study. Spine 1986;11:942–3.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Hollo I, Gergely I, Boross M. Smoking results in calcitonin resistance. JAMA 1977;237:2470.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Kwiatkowski TC, Hanley EN, Jr., Ramp WK. Cigarette smoking and its orthopedic consequences. Am J Orthop 1996;25:590–7.

    PubMed  CAS  Google Scholar 

  15. de Vernejoul MC, Bielakoff J, Herve M, et al. Evidence for defective osteoblastic function. A role for alcohol and tobacco consumption in osteoporosis in middle-aged men. Clin Orthop Relat Res 1983:107–15.

    Google Scholar 

  16. Nilsson OS, Bauer HC, Brosjo O, et al. Influence of indomethacin on induced het-erotopic bone formation in rats. Importance of length of treatment and of age. Clin Orthop Relat Res 1986:239–45.

    Google Scholar 

  17. 17. Deguchi M, Rapoff AJ, Zdeblick TA. Posterolateral fusion for isthmic spondy-lolisthesis in adults: analysis of fusion rate and clinical results. J Spinal Disord 1998;11:459–64.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures. A biomechanical study. J Bone Joint Surg Am 1986;68:1389–95.

    PubMed  CAS  Google Scholar 

  19. 19. Arrington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996;329:300–9.

    Article  PubMed  Google Scholar 

  20. 20. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 1995;20:1055–60.

    Article  PubMed  CAS  Google Scholar 

  21. Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop Relat Res 1985:322–42.

    Google Scholar 

  22. 22. Stevenson S, Li XQ, Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochon-dral allografts in dogs. J Bone Joint Surg Am 1991;73:1143–56.

    PubMed  CAS  Google Scholar 

  23. 23. Hamer AJ, Strachan JR, Black MM, et al. Biochemical properties of cortical allo-graft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br 1996;78:363–8.

    PubMed  CAS  Google Scholar 

  24. 24. Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone allografts. Clin Orthop Relat Res 1983;174:54–7.

    PubMed  Google Scholar 

  25. 25. Jorgenson SS, Lowe TG, France J, et al. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 1994;19:2048–53.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Nugent PJ, Dawson EG. Intertransverse process lumbar arthrodesis with allogeneic fresh-frozen bone graft. Clin Orthop Relat Res 1993;287:107–11.

    PubMed  Google Scholar 

  27. 27. Blanco JS, Sears CJ. Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine 1997;22:1338–42.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Dodd CA, Fergusson CM, Freedman L, et al. Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 1988;70:431–4.

    PubMed  CAS  Google Scholar 

  29. 29. Jones KC, Andrish J, Kuivila T, et al. Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scolio-sis. J Pediatr Orthop 2002;22:285–9.

    Article  PubMed  Google Scholar 

  30. 30. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop Relat Res 2002;394:27–38.

    Article  PubMed  Google Scholar 

  31. 31. Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. Spine J 2002;2:206–15.

    Article  PubMed  Google Scholar 

  32. 32. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987;18:323–34.

    PubMed  CAS  Google Scholar 

  33. 33. Damien CJ, Parsons JR, Prewett AB, et al. Effect of demineralized bone matrix on bone growth within a porous HA material: a histologic and histometric study. J Biomater Appl 1995;9:275–88.

    PubMed  CAS  Google Scholar 

  34. 34. Kania RE, Meunier A, Hamadouche M, et al. Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 1998;43:38–45.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Frenkel SR, Moskovich R, Spivak J, et al. Demineralized bone matrix. Enhancement of spinal fusion. Spine 1993;18:1634–9.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Martin GJ, Jr., Boden SD, Titus L, et al. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 1999;24:637–45.

    Article  PubMed  Google Scholar 

  37. 37. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998;23:159–67.

    Article  PubMed  CAS  Google Scholar 

  38. 38. An HS, Simpson JM, Glover JM, et al. Comparison between allograft plus dem-ineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 1995;20:2211–6.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Thalgott JS, Giuffre JM, Klezl Z, et al. Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J 2002;2:63–9.

    Article  PubMed  Google Scholar 

  40. 40. Peterson B, Whang PG, Iglesias R, et al. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 2004;86-A:2243–50.

    PubMed  Google Scholar 

  41. 41. Lee YP, Jo M, Luna M, et al. The efficacy of different commercially available dem-ineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech 2005;18:439–44.

    Article  PubMed  Google Scholar 

  42. 42. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morpho-genetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001;83-A Suppl 1:S151–8.

    PubMed  Google Scholar 

  43. 43. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002;84-A:2123–34.

    PubMed  Google Scholar 

  44. 44. Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002;15:337–49.

    PubMed  Google Scholar 

  45. 45. Grauer JN, Patel TC, Erulkar JS, et al. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 2001;26:127–33.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Patel TC, Erulkar JS, Grauer JN, et al. Osteogenic protein-1 overcomes the inhibitory effect of nicotine on posterolateral lumbar fusion. Spine 2001;26:1656–61.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Cunningham BW, Shimamoto N, Sefter JC, et al. Osseointegration of autograft versus osteogenic protein-1 in posterolateral spinal arthrodesis: emphasis on the comparative mechanisms of bone induction. Spine J 2002;2:11–24.

    Article  PubMed  Google Scholar 

  48. 48. Blattert TR, Delling G, Dalal PS, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxya-patite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002;27:2697–705.

    Article  PubMed  Google Scholar 

  49. 49. Boden SD, Martin GJ, Jr., Horton WC, et al. Laparoscopic anterior spinal arthro-desis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998;11:95–101.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002;27:567–75.

    Article  PubMed  Google Scholar 

  51. 51. Sandhu HS, Kanim LE, Kabo JM, et al. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine 1995;20:2669–82.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Boden SD, Kang J, Sandhu H, et al. Use of recombinant human bone morphoge-netic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 2002;27:2662–73.

    Article  PubMed  Google Scholar 

  53. 53. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000;92:191–6.

    PubMed  CAS  Google Scholar 

  54. 54. Jahng TA, Fu TS, Cunningham BW, et al. Endoscopic instrumented posterolateral lumbar fusion with Healos and recombinant human growth/differentiation factor-5. Neurosurgery 2004;54:171–80; discussion 80–1.

    Article  PubMed  Google Scholar 

  55. 55. Sangadala S, Boden SD, Viggeswarapu M, et al. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads. J Biol Chem 2006;281:17212–9.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998;23:2486–92.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Ludwig SC, Boden SD. Osteoinductive bone graft substitutes for spinal fusion: a basic science summary. Orthop Clin North Am 1999;30:635–45.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Burwell RG. The function of bone marrow in the incorporation of a bone graft. Clin Orthop Relat Res 1985;200:125–41.

    PubMed  Google Scholar 

  59. 59. Curylo LJ, Johnstone B, Petersilge CA, et al. Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 1999;24:434–8; discussion 8–9.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 2005;432:242–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Simpson, A.K., Whang, P.G., Grauer, J.N. (2008). Biological Approaches to Spinal Fusion. In: Pietrzak, W.S. (eds) Musculoskeletal Tissue Regeneration. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-239-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-239-7_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-909-3

  • Online ISBN: 978-1-59745-239-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics