Skip to main content

Distraction Osteogenesis of the Facial Skeleton

  • Chapter
Musculoskeletal Tissue Regeneration

Part of the book series: Orthopedic Biology and Medicine ((OBM))

  • 1836 Accesses

Abstract

Distraction osteogenesis of the facial skeleton has provided both a powerful tool to those who are interested in studying the biology of bone and has added a powerful technique to the armamentarium of surgeons who treat facial disfi gurement. The application of bone distraction to the facial skeleton has been largely derived from prior work in the lower extremity, and the fundamental biologic concepts of distraction osteogenesis must be thoroughly understood before the extension of this work to the facial skeleton can be consistently applied successfully. Bone distraction initiates a complex biologic process that induces biosynthetic pathways to form additional soft tissue and bone. The application of this principle to the facial skeleton must also take into consideration specifi c characteristics of the face and its anatomy. Surgeons traditionally view the face in three separate domains: 1) the upper face – from the eyes to the top of the head, 2) the mid-face – from the upper teeth to the eyes, and 3) the lower face – from the lower teeth to the neck. Each of these three domains of the facial skeleton has its specifi c biological requirements and constraints, and each domain requires different considerations for fi xation of bone devices and for the design of linkage systems. In its most elementary form, the bone distraction device must meet two essential criteria: 1) provide rigid fixation in three dimensions of the bone on either side of the bone osteotomy site (or distraction gap) and 2) provide for a linkage system that will allow the two bone components to separate gradually at a set rate (usually approximately one millimeter per day). This chapter will briefl y review the fundamental biology of distraction osteogenesis, review its development in each of the three facial domains and review the inherent biological constraints and requirements of each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Codivilla A, On the means of lengthening in the lower limbs, the muscles and tissues which are shortened through deformity. Am. J. Orthoped. Surg., 1905;2: 353–358.

    Google Scholar 

  2. 2. Putti V, The operative lengthening of the femur. JAMA, 1921;77: 934–935.

    Google Scholar 

  3. 3. Moseley CF, Leg lengthening: The historical perspective. Orthop Clin North Am, 1991. 22: p. 555–561.

    PubMed  CAS  Google Scholar 

  4. 4. Ilizarov GA, Clinical application of the tension-stress effect for limb lengthening. Clin Orthop, 1992;250:8–26.

    Google Scholar 

  5. 5. Ilizarov GA, The tension-stress effect on the genesis and growth of tissues. Part I: The influence of stability of fixation and soft-tissue preservation. Clin Orthop, 1989;238:249–281.

    PubMed  Google Scholar 

  6. 6. Ilizarov GA, The tension-stress effect on the genesis and growth of tissues. Part II: The influence of the rate and frequency of distraction. Clin Orthop, 1989;239: 263–285.

    PubMed  Google Scholar 

  7. 7. Ilizarov GA, The transosseous synthesis: Theoretical and clinical aspects of regeneration and the growth of tissue. 1992, Berlin: Springer-Verlag.

    Google Scholar 

  8. 8. Caplan AI, The mesengenic process. Clinics in Plastic Surgery, 1994;21: 429–435

    PubMed  CAS  Google Scholar 

  9. 9. Schenck R, Histology of fracture repair and non-union. AO/ASIF Instructional Course Bulletin. Davos:AO/ASIF, 1978.

    Google Scholar 

  10. 10. Bruder SP, Fink DJ, and Caplan AI, Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem, 1994;56:283–294.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Caplan, A., Mesenchymal stem cells. Journal of Orthopedic Research, 1991. 9: p. 641–50.

    Article  CAS  Google Scholar 

  12. 12. Caplan AI, Bone development. Ciba Foundation Symposium, 1993. 136: p. 3–21.

    Google Scholar 

  13. 13. McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH, Lengthening of the human mandible by gradual distraction. Plast Reconstr Surg, 1992;89: 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. 14. McCarthy JG, Williams JK, Grayson BH, Crombie JS, Controlled multi-planar distraction of the mandible: Device development and clinical application. J Craniofac Surg, 1998;9:322–329.

    Article  PubMed  CAS  Google Scholar 

  15. 15. McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT, Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg, 2001;107: 1812–1827.

    Article  PubMed  CAS  Google Scholar 

  16. 16. McCarthy JG, Katzen JT, Hopper R, Grayson BH, The first decade of mandibular distraction: Lessons we have learned. Plast Reconstr Surg, 2002;110:1704–1713.

    Article  PubMed  Google Scholar 

  17. 17. Karp NS, Thorne CH, McCarthy JG, Sissons HA, Bone lengthening in the craniofacial skeleton, Ann Plast Surg, 1990;24: 231–237.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Snyder CC, Levine GA, Swanson HM, Browne EZ, Mandibuar lengthening by gradual distraction:preliminary report. Plast Reconstr Surg., 1973;51:506–508.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Mofid MM., Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA, Craniofacial distraction osteogenesis: A review of 3278 cases. Plast Reconstr Surg, 2001;108:1103–1114.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Robin P, Glossoptosis due to atresia and hypotrophy of the mandible. Am J Dis. Child, 1934;48: 541-end page.

    Google Scholar 

  21. 21. Randall P, The Robin sequence: Micrognathia and glossoptosis with airway obstruction, in Plastic Surgery, J. McCarthy, Editor. 1990, W.B.Saunders: Philadelphia. p. 3123–34.

    Google Scholar 

  22. 22. Denny AD, Talisman R, Hanson PR, Recinos RF, Mandibular distraction osteogenesis in very young patients to correct airway obstruction. Plast Reconstr Surg, 2001;108:302–311.

    Article  PubMed  CAS  Google Scholar 

  23. Singhal V. Mandibular distraction osteogenesis in preventing tracheostomy in children with upper airway obstruction secondary to micrognathia. in ASPS/PSEF/ ASMS 71st Annual Meeting. 2002. San Antono, TX.

    Google Scholar 

  24. 24. Denny AD, Distraction osteogenesis in Pierre Robin neonates with airway obstruction. Clin in Plast Surg, 2004;31:221–229.

    Article  Google Scholar 

  25. 25. Denny A, Amm C, New technique for airway correction in neonates with severe Pierre Robin sequence. J Pediatr, 2005;147: 97–101.

    Article  PubMed  Google Scholar 

  26. 26. Denny A, Kalantarian B, Mandibular distraction in neonates: a strategy to avoid tracheostomy. Plast Reconstr Surg, 2002;109:896–904.

    Article  PubMed  Google Scholar 

  27. Singhal V, Neonatal internal mandibular distraction osteogenesis for upper airway management in Pierre Robin and other syndromic infants - Short term follow-up in American Association of Plastic Surgeons - 85th Annual Meeting. 2006. Hilton Head, SC.

    Google Scholar 

  28. 28. Pruzansky S, Not all dwarfed mandibles are alike. Birth Defects, 1969;5(2):120– 129.

    Google Scholar 

  29. 29. Kaban LB, M. Moses MH, Mulliken JB, Surgical corrections of hemifacial microsomia in the growing child. Plast Reconstr Surg, 1980;82: 9–19.

    Article  Google Scholar 

  30. 30. Stelnicki EJ, Lin WY, Lee C, Grayson BH, McCArthy JG, Long-term outcome study of bilateral mandibular distraction: A comparison of Treacher Collins and Nager syndromes to other types of micrognathia. Plast Reconstr Surg, 2002;109: 1819–1825.

    Article  PubMed  Google Scholar 

  31. 31. Burstein FD, Williams JK, Hudgins R, Graham L, Teague G, Paschal M, Simms C, Single stage craniofacial distraction using resorbable devices. J Craniofac surg 2002;13:776–782.

    Article  PubMed  Google Scholar 

  32. 32. Burstein FD, Williams JK Mandibular distraction osteogenesis in Pierre Robin sequence: Application of a new internal single stage resorbable device. Plast Reconstr Surg, 2005;115: p. 61–67.

    PubMed  CAS  Google Scholar 

  33. 33. Gosain AK, Santoro TD, Havlik RJ, Cohen SR, Holmes RE, Midface distraction following LeFort III and monobloc osteotomies: Problems and solutions. Plast Reconstr Surg, 2002;109:1797–1808.

    Article  PubMed  Google Scholar 

  34. 34. Chin M, Toth BA, LeFort III advancement with gradual distraction using internal devices. Plast Reconstr Surg, 1997;100:819–830.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Phillips JH, George AK, Thompson B, LeFort III osteotomy or distraction osteogenesis imperfecta: Your choice. Plast Reconstr Surg, 2006;117:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  36. 36. McCarthy JG, La Trenta GS, Breitbart AS, Grayson BH, Bookstein FL, The LeFort III advancement osteotomy in the child under 7 years of age. Plast Reconstr Surg, 1990;86:633–646.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Kaban LB, Conover M, Mulliken JB, Midface position after LeFort III advancment: a long-term follow-up study, Cleft Palate J, 1986;3(Supp.1):75–77.

    Google Scholar 

  38. 38. Fearon JA The LeFort III osteotomy: To distract or not to distract? Plast Reconstr Surg, 2001;107:1091–1103.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Figueroa AA, Polley JW, Friede H, Ko EW, Long term stablity after maxillary advancement with distraction osteogenesis using a rigid external distraction device in cleft maxillary deformties. Plast Reconstr Surg, 2004;114:1382–1392.

    Article  PubMed  Google Scholar 

  40. 40. Chin M, Toth BA, Distraction osteogenesis in maxillofacial surgery using internal devices. Review of five cases. J Oral Maxillofac Surg, 1996;54:45–53.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Polley JW, Figueroa AA, Management of severe maxillary deficiency in childhood and adolescence through distraction osteogenesis with an external adjustable rigid distraction device J Craniofac Surg, 1997;8: 181–185.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Havlik RJ, Seelinger MJ, Fashemo DV, Hathaway R, “Cat's Cradle” midfacial fixation distraction osteogenesis after LeFort III osteotomy. J Craniofac Surg, 2004;15:946–952.

    Article  PubMed  Google Scholar 

  43. 43. Polley JW, Figueroa AA, Charbel FT, Berkowitz R, Reisberg D, Cohen M, Monobloc craniomaxillofacial distraction osteogenes in a newborn with severe craniofacial synpstosis: A preliminary report. J Craniofac Surg, 1995;6:421–423.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Cohen SR, Boydston W, Burstein FD, Hudgins R, Monobloc distraction osteogenesis during infancy: Report of a case and presentation of a new device. Plast Reconstr Surg, 1998;101:1919–1924.

    Article  PubMed  CAS  Google Scholar 

  45. Arnaud E, Marchac D, Reniern D, Reduction of Morbidity of Frontofacial Monobloc Advancement by Osteodistraction. Plast Reconstr Surg., In Press.

    Google Scholar 

  46. 46. Cohen SR, Rutrick RE, Burstein FD, Distraction osteogenesis in the human cranio-facial skeleton: Initial experience with new distraction system. J Craniofac Surg., 1995;6:368–374.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Gewalli F, da Silva Guimaraes-Ferreira JP, Sahlin P, et al, Long-term follow-up of dynamic cranioplasty for brachycephaly – non-syndromic bicoronal synostosis. Scand J Plast Reconstr Surg Hand Surg, 2001;35:157–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Havlik, R.J. (2008). Distraction Osteogenesis of the Facial Skeleton. In: Pietrzak, W.S. (eds) Musculoskeletal Tissue Regeneration. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-239-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-239-7_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-909-3

  • Online ISBN: 978-1-59745-239-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics