Skip to main content

Muscle Mass and Weight Gain Nutritional Supplements

  • Chapter
Nutritional Supplements in Sports and Exercise

Abstract

There are numerous sports supplements available that claim to increase lean body mass. However, for these sports supplements to exert any favorable changes in lean body mass, they must influence those factors regulating skeletal muscle hypertrophy (i.e., satellite cell activity, gene transcription, protein translation). If a given sports supplement does favorably influence one of these regulatory factors, the result is a positive net protein balance (in which protein synthesis exceeds protein breakdown). Sports supplement categories aimed at eliciting a positive net protein balance include anabolic hormone enhancers, nutrient timing pre- and postexercise workout supplements, anticatabolic supplements, and nitric oxide boosters. Of all the sports supplements available, only a few have been subject to multiple clinical trials with repeated favorable outcomes relative to increasing lean body mass. This chapter focuses on these supplements and others that have a sound theoretical rationale in relation to increasing lean body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 1995;268(Pt 1):E514–E20.

    CAS  Google Scholar 

  2. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997;273(Pt 1):E99–E107.

    CAS  Google Scholar 

  3. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 1999;276(Pt 1):E118–E124.

    CAS  Google Scholar 

  4. Wagenmakers AJ. Tracers to investigate protein and amino acid metabolism in human subjects. Proc Nutr Soc 1999;58:987–1000.

    Article  CAS  Google Scholar 

  5. Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 2002;102:1621–1630.

    Article  Google Scholar 

  6. American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada. Joint position statement: nutrition and athletic performance. Med Sci Sports Exerc 2000;32:2130–2145.

    Article  Google Scholar 

  7. Tarnopolsky M. Protein requirements for endurance athletes. Nutrition 2004;20:662–668.

    Article  CAS  Google Scholar 

  8. Forslund AH, El-Khoury AE, Olsson RM, Sjodin AM, Hambraeus L, Young VR. Effect of protein intake and physical activity on 24-h pattern and rate of macronutrient utilization. Am J Physiol 1999;276(Pt 1):E964–E976.

    CAS  Google Scholar 

  9. Meredith CN, Zackin MJ, Frontera WR, Evans WJ. Dietary protein requirements and body protein metabolism in endurance-trained men. J Appl Physiol 1989;66:2850–2856.

    CAS  Google Scholar 

  10. Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol 1993;75:2134–2141.

    CAS  Google Scholar 

  11. Lamont LS, Patel DG, Kalhan SC. Leucine kinetics in endurance-trained humans. J Appl Physiol 1990;69:1–6.

    CAS  Google Scholar 

  12. Friedman JE, Lemon PW. Effect of chronic endurance exercise on retention of dietary protein. Int J Sports Med 1989;10:118–123.

    Article  CAS  Google Scholar 

  13. Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP. Evaluation of protein requirements for trained strength athletes. J Appl Physiol 1992;73:1986–1995.

    CAS  Google Scholar 

  14. Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol 1992;73:767–775.

    CAS  Google Scholar 

  15. Lemon PW. Protein and amino acid needs of the strength athlete. Int J Sport Nutr 1991;1:127–145.

    CAS  Google Scholar 

  16. Antonio J, Stout J (eds). Sports Supplements. Lippincott Williams & Wilkins, Philadelphia, 2001.

    Google Scholar 

  17. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A 1997;94:14930–14935.

    Article  CAS  Google Scholar 

  18. Fruhbeck G. Protein metabolism: slow and fast dietary proteins. Nature 1998;391:843, 845.

    Article  CAS  Google Scholar 

  19. Dangin M, Boirie Y, Garcia-Rodenas C, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab 2001;280:E340–E348.

    CAS  Google Scholar 

  20. Driskell J, Wolinsky I (eds) Energy-Yielding Macronutrients and Energy Metabolism in Sports Nutrition. CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  21. Demling RH, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab 2000;44:21–29.

    Article  CAS  Google Scholar 

  22. Kerksick CM, Rasmussen CJ, Lancaster SL, et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res 2006;20:643–653.

    Google Scholar 

  23. Nikawa T, Ikemoto M, Sakai T, et al. Effects of a soy protein diet on exercise-induced muscle protein catabolism in rats. Nutrition 2002;18:490–495.

    Article  CAS  Google Scholar 

  24. Wolfe RR. Effects of amino acid intake on anabolic processes. Can J Appl Physiol 2001;26(Suppl):S220–S227.

    CAS  Google Scholar 

  25. Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 2004;63:351–356.

    Article  CAS  Google Scholar 

  26. Kimball SR, Jurasinski CV, Lawrence JC Jr, Jefferson LS. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4 G. Am J Physiol 1997;272(Pt 1):C754–C759.

    Google Scholar 

  27. Biolo G, Declan Fleming RY, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 1995;95:811–819.

    Article  CAS  Google Scholar 

  28. Hillier TA, Fryburg DA, Jahn LA, Barrett EJ. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am J Physiol 1998;274(Pt 1):E1067–E1074.

    CAS  Google Scholar 

  29. Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab 2004;286:E529–E534.

    Article  CAS  Google Scholar 

  30. Biolo G, Williams BD, Fleming RY, Wolfe RR. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 1999;48:949–957.

    Article  CAS  Google Scholar 

  31. Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 1987;80:1–6.

    Article  CAS  Google Scholar 

  32. Heslin MJ, Newman E, Wolf RF, Pisters PW, Brennan MF. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol 1992;262(Pt 1):E911–E918.

    CAS  Google Scholar 

  33. Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol 1991;261(Pt 1):E809–E814.

    CAS  Google Scholar 

  34. Biolo G, Wolfe RR. Insulin action on protein metabolism. Baillieres Clin Endocrinol Metab 1993;7:989–1005.

    Article  CAS  Google Scholar 

  35. Bell JA, Fujita S, Volpi E, Cadenas JG, Rasmussen BB. Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. Am J Physiol Endocrinol Metab 2005;289:E999–E1006.

    Article  CAS  Google Scholar 

  36. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 2006;291:E745–E754.

    Article  CAS  Google Scholar 

  37. Tipton KD, Ferrando AA, Phillips SM, Doyle D Jr, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 1999;276(Pt 1):E628–E634.

    CAS  Google Scholar 

  38. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 2004;286:E321–E328.

    Article  CAS  Google Scholar 

  39. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 2003;78:250–258.

    CAS  Google Scholar 

  40. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab 2001;280:E982–E993.

    CAS  Google Scholar 

  41. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 2000;88:386–392.

    CAS  Google Scholar 

  42. Bird SP, Tarpenning KM, Marino FE. Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism 2006;55:570–577.

    Article  CAS  Google Scholar 

  43. Tipton KD, Rasmussen BB, Miller SL, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 2001;281:E197–E206.

    CAS  Google Scholar 

  44. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 2004;36:2073–2081.

    Article  CAS  Google Scholar 

  45. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 2007;292:E71–E76.

    Article  CAS  Google Scholar 

  46. Borsheim E, Aarsland A, Wolfe RR. Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab 2004;14:255–271.

    CAS  Google Scholar 

  47. Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 1997;83:2055–2063.

    CAS  Google Scholar 

  48. Kelly V, Jenkins D. Effect of oral creatine supplementation on near-maximal strength and repeated sets of high intensity bench press exercise. J Strength Cond Res 1998;12:109–115.

    Google Scholar 

  49. Van Loon LJ, Oosterlaar AM, Hartgens F, Hesselink MK, Snow RJ, Wagenmakers AJ. Effects of creatine loading and prolonged creatine supplementation on body composition, fuel selection, sprint and endurance performance in humans. Clin Sci (Lond) 2003;104:153–162.

    Article  Google Scholar 

  50. Kreider RB, Ferreira M, Wilson M, et al. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc 1998;30:73–82.

    CAS  Google Scholar 

  51. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab 2003;13:198–226.

    CAS  Google Scholar 

  52. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ. Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc 2002;34:537–543.

    Article  CAS  Google Scholar 

  53. Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci 2003;58:11–19.

    Google Scholar 

  54. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 2001;33:2111–2117.

    Article  CAS  Google Scholar 

  55. Chromiak JA, Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition 2002;18:657–661.

    Article  CAS  Google Scholar 

  56. Burke DG, Smith-Palmer T, Holt LE, Head B, Chilibeck PD. The effect of 7 days of creatine supplementation on 24-hour urinary creatine excretion. J Strength Cond Res 2001;15:59–62.

    CAS  Google Scholar 

  57. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol 1996;81:232–237.

    CAS  Google Scholar 

  58. Stout J, Eckerson J, Noonan D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res 1999;19:217–225.

    Article  CAS  Google Scholar 

  59. Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand 1995;153:207–209.

    Article  Google Scholar 

  60. Kreider RB, Klesges R, Harmon K, et al. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int J Sport Nutr 1996;6:234–246.

    CAS  Google Scholar 

  61. Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc 1999;31:1147–1156.

    Article  CAS  Google Scholar 

  62. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc 2001;33:1674–1681.

    Article  CAS  Google Scholar 

  63. Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 2003;35:923–929.

    Article  CAS  Google Scholar 

  64. Lowe DA, Lund T, Alway SE. Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. Am J Physiol 1998;275(Pt 1):C155–C162.

    CAS  Google Scholar 

  65. Schultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 1994;123:213–257.

    Article  CAS  Google Scholar 

  66. Hawke TJ. Muscle stem cells and exercise training. Exerc Sport Sci Rev 2005;33:63–68.

    Article  Google Scholar 

  67. Olsen S, Aagaard P, Kadi F, et al. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 2006;573(Pt 2):525–534.

    Article  CAS  Google Scholar 

  68. Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 2003;547(Pt 1):247–254.

    Article  CAS  Google Scholar 

  69. Spangenburg EE. IGF-I isoforms and ageing skeletal muscle: an ‘unresponsive’ hypertrophy agent? J Physiol 2003;547(Pt 1):2.

    Google Scholar 

  70. Mero A, Miikkulainen H, Riski J, Pakkanen R, Aalto J, Takala T. Effects of bovine colostrum supplementation on serum IGF-I, IgG, hormone, and saliva IgA during training. J Appl Physiol 1997;83:1144–1151.

    CAS  Google Scholar 

  71. Mero A, Kahkonen J, Nykanen T, et al. IGF-I, IgA, and IgG responses to bovine colostrum supplementation during training. J Appl Physiol 2002;93:732–739.

    Google Scholar 

  72. Mero A, Nykanen T, Keinanen O, et al. Protein metabolism and strength performance after bovine colostrum supplementation. Amino Acids 2005;28:327–335.

    Article  CAS  Google Scholar 

  73. Fernholm R, Bramnert M, Hagg E, et al. Growth hormone replacement therapy improves body composition and increases bone metabolism in elderly patients with pituitary disease. J Clin Endocrinol Metab 2000;85:4104–4112.

    Article  CAS  Google Scholar 

  74. Thoren M, Hilding A, Baxter RC, Degerblad M, Wivall-Helleryd IL, Hall K. Serum insulin-like growth factor I (IGF-I), IGF-binding protein-1 and -3, and the acid-labile subunit as serum markers of body composition during growth hormone (GH) therapy in adults with GH deficiency. J Clin Endocrinol Metab 1997;82:223–228.

    Article  CAS  Google Scholar 

  75. Ahmad AM, Hopkins MT, Thomas J, Ibrahim H, Fraser WD, Vora JP. Body composition and quality of life in adults with growth hormone deficiency; effects of low-dose growth hormone replacement. Clin Endocrinol (Oxf) 2001;54:709–717.

    Article  CAS  Google Scholar 

  76. Alba-Roth J, Muller OA, Schopohl J, von Werder K. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab 1988;67:1186–1189.

    Article  CAS  Google Scholar 

  77. Merimee TJ, Rabinowitz D, Riggs L, Burgess JA, Rimoin DL, McKusick VA. Plasma growth hormone after arginine infusion: clinical experiences. N Engl J Med 1967;276:434–439.

    Article  CAS  Google Scholar 

  78. Collier SR, Casey DP, Kanaley JA. Growth hormone responses to varying doses of oral arginine. Growth Horm IGF Res 2005;15:136–139.

    Article  CAS  Google Scholar 

  79. Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin 1981;7:475–481.

    Google Scholar 

  80. Suminski RR, Robertson RJ, Goss FL, et al. Acute effect of amino acid ingestion and resistance exercise on plasma growth hormone concentration in young men. Int J Sport Nutr 1997;7:48–60.

    CAS  Google Scholar 

  81. Besset A, Bonardet A, Rondouin G, Descomps B, Passouant P. Increase in sleep related GH and Prl secretion after chronic arginine aspartate administration in man. Acta Endocrinol (Copenh) 1982;99:18–23.

    CAS  Google Scholar 

  82. Colombani PC, Bitzi R, Frey-Rindova P, et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur J Nutr 1999;38:263–270.

    Article  CAS  Google Scholar 

  83. Walberg-Rankin J, Hawkins C, Fild D, Sebolt D. The effect of oral arginine during energy restriction in male weight trainers. J Strength Cond Res 1994;8:170–177.

    Google Scholar 

  84. Corpas E, Blackman MR, Roberson R, Scholfield D, Harman SM. Oral arginine-lysine does not increase growth hormone or insulin-like growth factor-I in old men. J Gerontol 1993;48:M128–M133.

    CAS  Google Scholar 

  85. Marcell TJ, Taaffe DR, Hawkins SA, et al. Oral arginine does not stimulate basal or augment exercise-induced GH secretion in either young or old adults. J Gerontol A Biol Sci Med Sci 1999;54:M395–M399.

    CAS  Google Scholar 

  86. Lukaski HC. Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes? Int J Sport Nutr 1995;5(Suppl):S74–S83.

    Google Scholar 

  87. Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 2000;72(Suppl):585S–593S.

    CAS  Google Scholar 

  88. Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med 2002;73:991–995.

    CAS  Google Scholar 

  89. Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res 2006;19:180–189.

    CAS  Google Scholar 

  90. Buchman AL, Keen C, Commisso J, et al. The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr 1998;17:124–127.

    CAS  Google Scholar 

  91. Brilla L, Conte V. Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online 2000;3:26–36.

    Google Scholar 

  92. Wilborn C, Kerksick CM, Campbell B, et al. Effects of zinc magnesium aspartate (ZMA) supplementation on training adaptations and markers of anabolism and catabolism. J Int Soc Sports Nutr 2004;1:12–20.

    Article  Google Scholar 

  93. Om AS, Chung KW. Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr 1996;126:842–848.

    CAS  Google Scholar 

  94. Neychev VK, Mitev VI. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J Ethnopharmacol 2005;101:319–323.

    Article  CAS  Google Scholar 

  95. Willoughby DS, Wilborn C, Taylor L, Campbell B. Eight weeks of aromatase inhibition using the nutritional supplement Novedex XT: effects in young, eugonadal men. Int J Sport Nutr Exerc Metab 2007;17:92–108.

    CAS  Google Scholar 

  96. Fryburg DA, Barrett EJ, Louard RJ, Gelfand RA. Effect of starvation on human muscle protein metabolism and its response to insulin. Am J Physiol 1990;259(Pt 1):E477–E482.

    CAS  Google Scholar 

  97. Fryburg DA, Louard RJ, Gerow KE, Gelfand RA, Barrett EJ. Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin’s antiproteolytic action in humans. Diabetes 1992;41:424–429.

    Article  CAS  Google Scholar 

  98. Van Someren KA, Edwards AJ, Howatson G. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab 2005;15:413–424.

    Google Scholar 

  99. Tischler M, Goldberg A. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 1982;257:1613–1621.

    CAS  Google Scholar 

  100. Nissen S, Sharp R, Ray M, et al. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 1996;81:2095–2104.

    CAS  Google Scholar 

  101. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol 2000;89:1340–1344.

    CAS  Google Scholar 

  102. Jowko E, Ostaszewski P, Jank M, et al. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition 2001;17:558–566.

    Article  CAS  Google Scholar 

  103. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion. I. Effects on strength and fat free mass. Med Sci Sports Exerc 2000;32:2109–2115.

    Article  CAS  Google Scholar 

  104. Nissen SL, Sharp RL. Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol 2003;94:651–659.

    CAS  Google Scholar 

  105. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium beta-hydroxy-beta-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med 1999;20:503–509.

    Article  CAS  Google Scholar 

  106. Slater G, Jenkins D, Logan P, et al. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab 2001;11:384–396.

    CAS  Google Scholar 

  107. Vukovich MD, Stubbs NB, Bohlken RM. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr 2001;131:2049–2052.

    CAS  Google Scholar 

  108. Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 1995;15:133–159.

    Article  CAS  Google Scholar 

  109. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T. Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol 2001;86:142–149.

    Article  CAS  Google Scholar 

  110. Hammarqvist F, Wernerman J, Ali R, von der Decken A, Vinnars E. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann Surg 1989;209:455–461.

    Article  CAS  Google Scholar 

  111. Vinnars E, Hammarqvist F, von der Decken A, Wernerman J. Role of glutamine and its analogs in posttraumatic muscle protein and amino acid metabolism. JPEN J Parenter Enteral Nutr 1990;14(Suppl):125S–129S.

    Article  CAS  Google Scholar 

  112. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J 2000;14:1685–1696.

    Article  CAS  Google Scholar 

  113. Morrison RJ, Miller CC 3rd, Reid MB. Nitric oxide effects on shortening velocity and power production in the rat diaphragm. J Appl Physiol 1996;80:1065–1069.

    CAS  Google Scholar 

  114. Morrison RJ, Miller CC 3rd, Reid MB. Nitric oxide effects on force-velocity characteristics of the rat diaphragm. Comp Biochem Physiol A Mol Integr Physiol 1998;119:203–209.

    Article  CAS  Google Scholar 

  115. Moncada S, Higgs A. The l-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002–2012.

    Article  CAS  Google Scholar 

  116. Campbell B, Roberts M, Kerksick C, et al. Pharmacokinetics, safety, and effects on exercise performance of l-arginine alpha-ketoglutarate in trained adult men. Nutrition 2006;22:872–881.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campbell, B. (2008). Muscle Mass and Weight Gain Nutritional Supplements. In: Nutritional Supplements in Sports and Exercise. Humana Press. https://doi.org/10.1007/978-1-59745-231-1_7

Download citation

Publish with us

Policies and ethics