Skip to main content

Regional Thermotherapy

  • Chapter
Regional Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A broad range of temperatures is useful in oncology. Thermoablation (heat alone) requires temperatures of >45 to 50°C and is only clinically possible in circumscribed lesions. High-intensity focused ultrasound (HIFU) and nanotherapy are suitable methods. The largest volume heated is the whole body, using whole-body hyperthermia (WBHT); 42°C is the highest temperature permitted. Clinical experience and some positive studies suggest, however, that higher temperatures (e.g., 43°C) are required at least in certain specific (e.g., hypoxic) parts of the tumors to increase local control in conjunction with radiotherapy and/or chemotherapy and to be beneficial for patients. Dedicated multiantenna applicators operating in the radiofrequency range (60–200 MHz) must be designed for each indication accounting for the anatomical region. Magnetic resonance monitoring is the first candidate for noninvasive control.

The technical problems have been solved to integrate such applicators into an MR-tomograph. Although commercially available systems (for regional hyperthermia) are adequate for pelvic and extremity tumors, adaption/optimization is still desired for abdominally disseminated disease. Here, the termpartbody hyperthermia has been created, for which a large number of clinical indications (gastrointestinal tumors) exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43:33–56.

    Article  PubMed  Google Scholar 

  2. Lindner LH, Eichhorn ME, Eibl H, Teichert N, Schmitt-Sody M, Issels RD. Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res 2004;10:2168–2178.

    Article  PubMed  CAS  Google Scholar 

  3. Li CY, Dewhirst MW. Hyperthermia-regulated immunogene therapy. Int J Hyperthermia 2002;18: 586–596.

    Article  PubMed  CAS  Google Scholar 

  4. Wust P, Riess H, Hildebrandt B, et al. Feasibility and analysis of thermal parameters for the whole body hyperthermia system IRATHERM-2000. Int J Hyperthermia 2002;16:325–339.

    Article  Google Scholar 

  5. Hildebrandt B, Dräger J, Kerner T, et al. Whole-body hyperthermia in the scope of von Ardenne’s systemic cancer multistep therapy (sCMT) combined with chemotherapy in patients with metastatic colorectal cancer: a phase I/II study. Int J Hyperthermia 2004;20:317–333.

    Article  PubMed  CAS  Google Scholar 

  6. Kerner T, Hildebrandt B, Ahlers O, et al. Anesthesiological experiences with whole body hyperthermia. Int J Hyperthermia 2003;19:1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Wust P, Nadobny J, Felix R, Deuflhard P, John W, Louis A. Numerical approaches to treatment planning in deep RF-hyperthermia. Strahlenth Onkol 1989;165(10) 751–757

    CAS  Google Scholar 

  8. Nadobny J, Wlodarczyk W, Westhoff L, Gellermann J, Felix R, Wust P. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets. IEEE Trans Biomed Eng 2005;52:505–519.

    Article  PubMed  Google Scholar 

  9. Hengst SA, Ehrenstein T, Herzog H, et al. Magnetic resonance tomography guided focused ultrasound surgery (MRgFUS) in tumor therapy—a new noninvasive therapy option. Radiologe 2004;44: 339–346.

    Article  PubMed  CAS  Google Scholar 

  10. Wust P, Gneveckow U, Ricke J, et al. Nanofluids for interstitial thermotherapy—feasibility, tolerance, achieved temperatures. Int J Hyperthermia, 2006, in press.

    Google Scholar 

  11. Wust P, Stahl H, Dieckmann K, et al. Local hyperthermia of N2/N3 cervical lymphnode metastases: correlation of technical/ thermal parameters and response. Int J Radiat Oncol Biol Phys 1996;34: 635–646.

    Article  PubMed  CAS  Google Scholar 

  12. Wust P, Gellermann J, Harder C, et al. Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Biol Phys 1998;41:1129–1137.

    Article  PubMed  CAS  Google Scholar 

  13. Tilly W, Wust P, Rau B, et al. Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations. Int J Hyperthermia 2001;17:172–188.

    Article  PubMed  CAS  Google Scholar 

  14. Gneveckow U, Jordan A, Scholz R, et al. Description and characterization of the novel hyperthermia-and thermoablation-system MFH300F for clinical magnetic fluid hyperthermia. Med Phys 2004;31:1444–1451.

    Article  PubMed  Google Scholar 

  15. Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 1993;9:51–68.

    PubMed  CAS  Google Scholar 

  16. Ricke J, Wust P, Stohlmann, A, et al. CT-guided interstitial brachy therapy of liver malignancies alone or in combination with thermal ablation: phase I-II results of a novel technique. Int J Radiat Oncol Biol Phys 2004;58:1496–1505.

    Article  PubMed  Google Scholar 

  17. Wust P, Wischka von Borczyskowksi D, Henkel T, et al. Clinical and physical determinants for toxicity of 125-1 seed prostate brachytherapy. Radiother Oncol 2004;73:39–48.

    Article  PubMed  Google Scholar 

  18. Seebass M, Beck R, Gellermann J, Nadobny J, Wust P. Electromagnetic phased arrays for regional hyperthermia—optimal frequency and antenna arrangement. Int J Hyperthermia 2001;17:321–336.

    Article  PubMed  CAS  Google Scholar 

  19. Gellermann J, Wust P, Stalling D, et al. Clinical evaluation and verification of the hyperthermia treatment planning system HyperPlan. Int J Radiat Oncol Biol Phys 2000;47:1145–1156.

    Article  PubMed  CAS  Google Scholar 

  20. Sreenivasa G, Gellermann J, Rau B, et al. Clinical application of the hyperthermia treatment planning system HyperPlan—comparison of algorithms and clinical observables. Int J Radiat Oncol Biol Phys 2003;55:407–419.

    Article  PubMed  Google Scholar 

  21. Valdagni R, Amichetti M, Pani V. Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys 1998;15:13–24.

    Google Scholar 

  22. Van der Zee J, van der Holt B, Rietveld PJ, et al. Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwile local palliation. Br J Cancer 1999;79:483–490.

    Article  PubMed  Google Scholar 

  23. Jones EL, Prosnitz LR, Dewhirst MW, et al. Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res 2004;10:4287–4293.

    Article  PubMed  CAS  Google Scholar 

  24. Sapozink MD, Corry PM, Kapp DS, et al. RTOG quality assurance guidelines for clinical trials using hyperthermia for deep-seated malignancy. Int J Radiat Oncol Biol Phys 1991;20:1109–1115.

    PubMed  CAS  Google Scholar 

  25. Leopold KA, Dewhirst MW, Samulski TV, et al. Cumulative minutes with T90 greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys 1993;25:841–847.

    PubMed  CAS  Google Scholar 

  26. Issels R, Prenninger SW, Nagele A, et al. Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcoms: a phase II study. J Clin Oncol 1990;8:1818–1829.

    PubMed  CAS  Google Scholar 

  27. Van der Zee J, Per-Valstar JN, Rietveld PJ, de Graaf-Strukowska L, van Rhoon GC. Practical limitations of interstitial thermometry during deep hyperthermia. Int J Radiat Oncol Biol Phys 1998;40:1205–1212.

    Article  PubMed  Google Scholar 

  28. Wust P, Gellermann J, Harder C, et al. Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Biol Phys 1998;41:1129–1137.

    Article  PubMed  CAS  Google Scholar 

  29. Lagendijk J, van Rhoon G, Hornsleth S, et al. ESHO quality assurance guidelines for regional hyperthermia. Int. J. Hyperthermia 1998;14:125–133.

    Article  PubMed  CAS  Google Scholar 

  30. Rau B, Wust P, Tilly W, et al. Preoperative radio-chemotherapy in locally advanced recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 2000;48:381–391.

    Article  PubMed  CAS  Google Scholar 

  31. Tilly W, Gellermann J, Graf R, et al. Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pN0 M0. Strahlenther Onkol 2005;181:35–41.

    Article  PubMed  Google Scholar 

  32. Sreenivasa G, Hildebrandt B, Kümmel S, et al. Preoperative hyperthermic radiochemotherapy in non-resectable cervical carcinoma (FIGO IIB-IVA)—a pilot phase II study. 2005; submitted.

    Google Scholar 

  33. Gellermann J, Wlodarczyk W, Ganter H, et al. A practical approach to perform the thermography in a hyperthermia/MR hybrid system—validation in an anthropomorphous phantom. Int J Radiat Oncol Biol Phys 2005;61:267–277.

    Article  PubMed  Google Scholar 

  34. Wust P, Gellermann J, Seebass M, et al. [Partt-body hyperthermia with a radiofrequency multiantenna applicator under online control in a 1.5 T MR-tomograph] Fortschr Röntgenstr 2004;176:363–374.

    CAS  Google Scholar 

  35. McDannold N, Hynynen K, Jolesz F. MRI monitoring of the thermal ablation of tissues: effects of long exposure times. J Magn Reson Imaging 2001;13:421–427.

    Article  PubMed  CAS  Google Scholar 

  36. Bär NK, Schulz T, Puccini S, Schirmer T, Kahn T, Busse H. MRT-gestützte laserinduzierte Thermoablation bei Lebertumoren—Klinische Aspekte und Konzept eines Überwachungssystems. Z Med Phys 2003;13:209–213.

    PubMed  Google Scholar 

  37. Heisterkamp J, Matheijssen NAA, van Hillegersberg R, et al. Accuracy of MR phase mapping for temperature monitoring during interstitial laser coagulation (ILC) in the liver at rest and simulated respiration. Magn Reson Med 1999;41:919–925.

    Article  PubMed  CAS  Google Scholar 

  38. Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001;219:176–185.

    PubMed  CAS  Google Scholar 

  39. McDannold N, Hynynen K, Wolf D, Wolf G, Jolesz F. MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 1998;8:91–100.

    Article  PubMed  CAS  Google Scholar 

  40. Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L. Temperature distribution measurements in two-dimension NMR imaging. Med Phys 1983;10:321–325.

    Article  PubMed  CAS  Google Scholar 

  41. Delannoy J, Chen CN, Turner R, Levin RL, Le Bihan D. Noninvasive temperature imaging using diffusion MRI. Magn Reson Med 1991;19:333–339.

    Article  PubMed  CAS  Google Scholar 

  42. Samulski TV, MacFall J, Zhang Y, Grant W, Charles C. Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 1992;8:819–829.

    PubMed  CAS  Google Scholar 

  43. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 1995;33:74–81.

    Article  PubMed  Google Scholar 

  44. Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA. Temperature mapping using the proton chemical shift: a chemical shift selective phase mapping method. Magn ResonMed 1997;38:845–851.

    Article  CAS  Google Scholar 

  45. Fried MP, Morrison PR, Hushek SG, Kernahan GA, Jolesz FA. Dynamic Tl-weighted magnetic resonance imaging of interstitial laser photocoagulation in the liver: observations on in vivo temperature sensitivity. Lasers Surg Med 1996;18:410–419.

    Article  PubMed  CAS  Google Scholar 

  46. Young IR, Hand JW, Oatridge A, Prior MV. Modeling and observation of temperature changes in vivo using MRI. Magn Reson Med 1994;32:358–369.

    Article  PubMed  CAS  Google Scholar 

  47. Gellermann J, Wlodarczyk W, Feussner A, et al. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 2005;21:497–513.

    Article  PubMed  CAS  Google Scholar 

  48. De Poorter J, De Wagter C, De Deene Y. The proton-resonance-frequency-shift method compared with molecular diffusion for quantitative measurement of two-dimensional time-dependent temperature distribution in a phantom. J Magn Reson 1994;B103:234–241.

    Google Scholar 

  49. Quesson B, de Zwart JA, Moonen CTW: Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525–533.

    Article  PubMed  CAS  Google Scholar 

  50. Wlodarczyk W, Hentschel M, Wust P, et al. Comparison of magnetic resonance methods for mapping of small temperature changes. Phys Med Biol 1999;44:607–624.

    Article  PubMed  CAS  Google Scholar 

  51. Vogl TJ. Weinhold N, Mack MG, et al. [Verification of MR thermometry by means of an in vivo intralesion, fluoroptic temperature measurement for laser-induced thermotherapy of liver metastases]. RoFo Fortschr Geb Rontgenstr Neuen Bildgeb Verf 1998;169:182–188.

    CAS  Google Scholar 

  52. Carter DL, MacFall JR, Clegg ST, et al. Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. Int J Radiat Oncol Biol Phys 1998;40:815–822.

    Article  PubMed  CAS  Google Scholar 

  53. Peller M Löffler R, Baur A, et al. MRT-gesteuerte regionale Tiefenhyperthermie. [MRI-controlled regional hyperthermia]. Radiologe 1999;39:756–763.

    Article  PubMed  CAS  Google Scholar 

  54. Peller M, Reinl HM, Weigel A, Meininger M, Isseis RD, Reiser M. T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: feasibility study in muscle and adipose tissue. Magn Reson Med 2002;47:1194–1201.

    Article  PubMed  Google Scholar 

  55. Gellermann J, Wlodarczyk W, Hildebrandt B, et al. Non-invasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Research 2005;65:1–9.

    Article  Google Scholar 

  56. Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in a combined treatment of cancer. Lancet Oncology 2002;3:487–497.

    Article  PubMed  CAS  Google Scholar 

  57. Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia 2001;17:1–18.

    Article  PubMed  CAS  Google Scholar 

  58. Issels RD, Abdel-Rahman S, Sendtner C, et al. Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: Long-term results of a phase II study. Eur J Cancer 2002;31:1599–1608.

    Google Scholar 

  59. Van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, Van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000;355:1119–1125.

    Article  PubMed  Google Scholar 

  60. Prosnitz L. A new phase III trial for treatment of carcinoma of the cervix. Int J Hyperthermia 2002:18:31–32.

    Article  PubMed  CAS  Google Scholar 

  61. Rau B, Wust P, Hohenberger P, et al. Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer. A phase II clinical trial. Annals Surg 1998;227:380–389.

    Article  CAS  Google Scholar 

  62. Overgaard J, Gonzalez Gonzalez D, Hulshof MC, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995;345:540–543.

    Article  PubMed  CAS  Google Scholar 

  63. Vernon CC, Hand JW, Field SB, et al. Radiotherapy withz or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 1996;35:731–744.

    Article  PubMed  CAS  Google Scholar 

  64. Jones E, Oleson JR, Prosnitz LR, et al. Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 1995:23:3079–3085.

    Article  Google Scholar 

  65. Colombo R, Da Pozzo LF, Salonia A, et al. Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J Clin Oncol 2003;23:4270–4276.

    Article  Google Scholar 

  66. Budach V, Stuschke M, Budach W, et al. Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the Radiotherapy Cooperative Clinical Trials Group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 2005;23:1125–1135.

    Article  PubMed  CAS  Google Scholar 

  67. Graf R, Hildebrandt B, Tilly W, et al. Dose-escalated conformai radiotherapy of glioblastomas— results of a retrospective comparison applying radiation doses of 60 and 70 Gy. Onkologie 2005; 28:325–330.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wust, P., Gellermann, J. (2007). Regional Thermotherapy. In: Schlag, P.M., Stein, U., Eggermont, A.M.M. (eds) Regional Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-225-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-225-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-672-6

  • Online ISBN: 978-1-59745-225-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics