Skip to main content

Cancer-Host Interactions

A Paradigm Shift Brings New Understanding and New Opportunities

  • Chapter
  • 1055 Accesses

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Cancer is not a single cell disease and its existence and behavior are constantly modulated by the host. Cancer gene expression and genetics are also highly dynamic and are regulated epigenetically by the host. In this chapter, we describe the molecular pathways leading to an unusual property of cancer cells: the ability to mimic the host microenvironment, and, in particular, the characteristics of osteomimicry and vasculogenic mimicry. We also discuss the importance of host inflammatory and stem cells, which contribute to the growth and survival of cancer cells. By understanding the salient features of cancer-host interaction, novel therapeutics may be developed to target both cancer and host in the treatment of lethal prostate cancer metastases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter, K. (2006). Host genetics influence tumour metastasis. Nat. Rev. Cancer 6(2), 141–146.

    Article  PubMed  CAS  Google Scholar 

  2. Bissell, M. J. and Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1), 17–23.

    PubMed  CAS  Google Scholar 

  3. Haslam, S. Z. and Woodward, T. L. (2003). Host microenvironment in breast cancer development: epithelial-cellstromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 5(4), 208–215.

    Article  PubMed  CAS  Google Scholar 

  4. Lynch, C. C. and Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation 70(9–10), 561–573.

    Article  PubMed  CAS  Google Scholar 

  5. Chung, L. W., Baseman, A., Assikis, V., and Zhau, H. E. (2005). Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J. Urol. 173(1), 10–20.

    Article  PubMed  Google Scholar 

  6. Baker, S. G., Lichtenstein, P., Kaprio, J., and Holm, N. (2005). Genetic susceptibility to prostate, breast, and colorectal cancer among Nordic twins. Biometrics 61(1), 55–63.

    Article  PubMed  Google Scholar 

  7. Heavey, P. M., McKenna, D., and Rowland, I. R. (2004). Colorectal cancer and the relationship between genes and the environment. Nutr. Cancer 48(2), 124–141.

    Article  PubMed  CAS  Google Scholar 

  8. Gallagher, P. G., Bao, Y., Prorock, A., et al. (2005). Gene expression profiling reveals cross-talk between melanoma and fibroblasts: implications for host-tumor interactions in metastasis. Cancer Res. 65(10), 4134–4146.

    Article  PubMed  CAS  Google Scholar 

  9. Gleave, M., Hsieh, J. T., Gao, C. A., von Eschenbach, A. C., and Chung, L. W. (1991). Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51(14), 3753–3761.

    PubMed  CAS  Google Scholar 

  10. Thalmann, G. N., Anezinis, P. E., Chang, S. M., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54(10), 2577–2581.

    PubMed  CAS  Google Scholar 

  11. Yoneda, T. and Hiraga, T. (2005). Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem. Biophys. Res. Commun. 328(3), 679–687.

    Article  PubMed  CAS  Google Scholar 

  12. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8(2), 98–101.

    Google Scholar 

  13. Hill, R., Song, Y., Cardiff, R. D., and Van Dyke, T. (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123(6), 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  14. Pathak, S., Nemeth, M. A., Multani, A. S., Thalmann, G. N., von Eschenbach, A. C., and Chung, L. W. (1997). Can cancer cells transform normal host cells into malignant cells? Br. J. Cancer 76(9), 1134–1138.

    PubMed  CAS  Google Scholar 

  15. Rhee, H. W., Zhau, H. E., Pathak, S., et al. (2001). Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev. Biol. Anim. 37(3), 127–140.

    Article  PubMed  CAS  Google Scholar 

  16. Thalmann, G. N., Sikes, R. A., Wu, T. T., et al. (2000). LNCaP progression model of human prostate cancer: androgenindependence and osseous metastasis. Prostate 44(2), 91–103.

    Article  PubMed  CAS  Google Scholar 

  17. Tuxhorn, J. A., Ayala, G. E., and Rowley, D. R. (2001). Reactive stroma in prostate cancer progression. J. Urol. 166(6), 2472–2483.

    Article  PubMed  CAS  Google Scholar 

  18. Bedogni, B., Welford, S. M., Cassarino, D. S., Nickoloff, B. J., Giaccia, A. J., and Powell, M. B. (2005). The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8(6), 443–454.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis, C. E. and Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66(2), 605–612.

    Article  PubMed  CAS  Google Scholar 

  20. Radisky, D. C., Levy, D. D., Littlepage, L. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047), 123–127.

    Article  PubMed  CAS  Google Scholar 

  21. Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5(4), 263–274.

    Article  PubMed  CAS  Google Scholar 

  22. Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation 70(9–10), 498–505.

    Article  PubMed  Google Scholar 

  23. Horak, C. E. and Steeg, P. S. (2005). Metastasis gets site specific. Cancer Cell 8(2), 93–95.

    Article  PubMed  CAS  Google Scholar 

  24. Minn, A. J., Kang, Y., Serganova, I., et al. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115(1), 44–55.

    Article  PubMed  CAS  Google Scholar 

  25. Constantinescu, S. N. (2000). Stem cell generation and choice of fate: role of cytokines and cellular microenvironment. J. Cell. Mol. Med. 4(4), 233–248.

    Article  PubMed  CAS  Google Scholar 

  26. Nojima, H. (1997). Cell cycle checkpoints, chromosome stability and the progression of cancer. Hum. Cell 10(4), 221–230.

    PubMed  CAS  Google Scholar 

  27. Blackburn, E. H. (2005). Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579(4), 859–862.

    Article  PubMed  CAS  Google Scholar 

  28. Blasco, M. A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6(8), 611–622.

    Article  PubMed  CAS  Google Scholar 

  29. Koeneman, K. S., Yeung, F., and Chung, L. W. (1999). Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39(4), 246–261.

    Article  PubMed  CAS  Google Scholar 

  30. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315(26), 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  31. Hendrix, M. J., Seftor, E. A., Hess, A. R., and Seftor, R. E. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3(6), 411–421.

    Article  PubMed  CAS  Google Scholar 

  32. Bajou, K., Noel, A., Gerard, R. D., et al. (1998). Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4(8), 923–928.

    Article  PubMed  CAS  Google Scholar 

  33. Boccaccio, C. and Comoglio, P. M. (2005). A functional role for hemostasis in early cancer development. Cancer Res. 65(19), 8579–8582.

    Article  PubMed  CAS  Google Scholar 

  34. Lassam, N. and Jay, G. (1989). Suppression of MHC class I RNA in highly oncogenic cells occurs at the level of transcription initiation. J. Immunol. 143(11), 3792–3797.

    PubMed  CAS  Google Scholar 

  35. Gatti, L. and Zunino, F. (2005). Overview of tumor cell chemoresistance mechanisms. Methods Mol. Med. 111, 127–148.

    PubMed  CAS  Google Scholar 

  36. Moreno, J., Krishnan, A. V., and Feldman, D. (2005). Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J. Steroid. Biochem Mol. Biol. 97(1–2), 31–36.

    Article  PubMed  CAS  Google Scholar 

  37. Chung, L. W. (1995). The role of stromal-epithelial interaction in normal and malignant growth. Cancer Surv. 23, 33–42.

    PubMed  CAS  Google Scholar 

  38. Cunha, G. R. (1994). Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74(3 Suppl), 1030–1044.

    Article  PubMed  CAS  Google Scholar 

  39. Cunha, G. R., Donjacour, A. A., Cooke, P. S., et al. (1987). The endocrinology and developmental biology of the prostate. Endocr. Rev. 8(3), 338–362.

    Article  PubMed  CAS  Google Scholar 

  40. Chung, L. W., Anderson, N. G., Neubauer, B. L., Cunha, G. R., Thompson, T. C., and Rocco, A. K. (1981). Tissue interactions in prostate development: roles of sex steroids. Prog. Clin. Biol. Res. 75A, 177–203.

    PubMed  CAS  Google Scholar 

  41. Thompson, T. C., Cunha, G. R., Shannon, J. M., and Chung, L. W. (1986). Androgen-induced biochemical responses in epithelium lacking androgen receptors: characterization of androgen receptors in the mesenchymal derivative of urogenital sinus. J. Steroid Biochem. 25(5A), 627–634.

    Article  PubMed  CAS  Google Scholar 

  42. Amorino, G. P. and Parsons, S. J. (2004). Neuroendocrine cells in prostate cancer. Crit. Rev. Eukaryot. Gene Expr. 14(4), 287–300.

    Article  PubMed  CAS  Google Scholar 

  43. Culig, Z. (2004). Androgen receptor cross-talk with cell signalling pathways. Growth Factors 22(3), 179–184.

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez, P., Clement, V., and Ruiz i Altaba, A. (2005). Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer. Cancer Res. 65(8), 2990–2992.

    PubMed  CAS  Google Scholar 

  45. Scher, H. I. and Sawyers, C. L. (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23(32), 8253–8261.

    Article  PubMed  CAS  Google Scholar 

  46. Charames, G. S. and Bapat, B. (2003). Genomic instability and cancer. Curr. Mol. Med. 3(7), 589–596.

    Article  PubMed  CAS  Google Scholar 

  47. Mendez, O., Fernandez, Y., Peinado, M. A., Moreno, V., and Sierra, A. (2005). Anti-apoptotic proteins induce nonrandom genetic alterations that result in selecting breast cancer metastatic cells. Clin. Exp. Metastasis 22(4), 297–307.

    Article  PubMed  CAS  Google Scholar 

  48. Hunter, K. W. (2004). Host genetics and tumour metastasis. Br. J. Cancer 90(4), 752–755.

    Article  PubMed  CAS  Google Scholar 

  49. Koop S., MacDonald, I. C., Luzzi, K., et al. (1995). Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res. 55(12), 2520–2523.

    PubMed  CAS  Google Scholar 

  50. Bhowmick, N. A., Chytil, A., Plieth D., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659), 848–851.

    Article  PubMed  CAS  Google Scholar 

  51. Mundy, G. R. (1997). Mechanisms of bone metastasis. Cancer 80(8 Suppl), 1546–1556.

    Article  PubMed  CAS  Google Scholar 

  52. Lecrone, V., Li, W., Devoll, R. E., Logothetis, C., and Farach-Carson, M. C. (2000). Calcium signals in prostate cancer cells: specific activation by bone-matrix proteins. Cell Calcium 27(1), 35–42.

    Article  PubMed  CAS  Google Scholar 

  53. Thomas, R., True, L. D., Bassuk, J. A., Lange, P. H., and Vessella, R. L. (2000). Differential expression of osteonectin/ SPARC during human prostate cancer progression. Clin. Cancer Res. 6(3), 1140–1149.

    PubMed  CAS  Google Scholar 

  54. Keller, E. T. (2002). The role of osteoclastic activity in prostate cancer skeletal metastases. Drugs Today (Barc) 38(2), 91–102.

    Article  CAS  Google Scholar 

  55. Zhang, J., Dai, J., Qi, Y., et al. (2001). Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107(10), 1235–1244.

    PubMed  CAS  Google Scholar 

  56. Yeung, F., Law, W. K., Yeh, C. H., et al. (2002). Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J. Biol. Chem. 277(4), 2468–2476.

    Article  PubMed  CAS  Google Scholar 

  57. Huang, W. C., Xie, Z., Konaka, H., Sodek, J., Zhau, H. E., and Chung, L. W. (2005). Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res. 65(6), 2303–2313.

    Article  PubMed  CAS  Google Scholar 

  58. Huang, W. C., Wu, D., Xie, Z., et al. (2006). B2-Microglobulin is a signaling and Growth-Promoting Factor for Human Prostate Cancer Bone Metastasis. 16(18), 9108–9116.

    Google Scholar 

  59. Keller, E. T. and Brown, J. (2004). Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J. Cell Biochem. 91(4), 718–729.

    Article  PubMed  CAS  Google Scholar 

  60. Logothetis, C. J. and Lin, S. H. (2005). Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5(1), 21–28.

    Article  PubMed  CAS  Google Scholar 

  61. Xiao, Y., Haase, H., Young W. G., and Bartold, P. M. (2004). Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplant. 13(1), 15–25.

    PubMed  Google Scholar 

  62. Lin, D. L., Tarnowski, C. P., Zhang, J., et al. (2001). Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 47(3), 212–221.

    Article  PubMed  CAS  Google Scholar 

  63. Louie, M. C., Yang, H. Q., Ma, A. H., et al. (2003). Androgen-induced recruitment of RNA polymerase II to a nuclear receptor-p160 coactivator complex. Proc. Natl. Acad. Sci. USA 100(5), 2226–2230.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, X., Odom, D. T., Koo S. H., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102(12), 4459–4464.

    Article  PubMed  CAS  Google Scholar 

  65. Harris, A. L. (2002). Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer 2(1), 38–47.

    Article  PubMed  CAS  Google Scholar 

  66. Mayo, L. D., Kessler, K. M., Pincheira, R., Warren, R. S., and Donner, D. B. (2001). Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J. Biol. Chem. 276(27), 25,184–25,189.

    Article  PubMed  CAS  Google Scholar 

  67. Kasbohm, E. A., Guo, R., Yowell, C. W., et al. (2005). Androgen receptor activation by G(s) signaling in prostate cancer cells. J. Biol. Chem. 280(12), 11,583–11,589.

    Article  PubMed  CAS  Google Scholar 

  68. Carmeliet, P., Dor, Y., Herbert, J. M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692), 485–490.

    Article  PubMed  CAS  Google Scholar 

  69. Lee, M., Hwang, J. T., Lee, H. J., et al. (2003). AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J. Biol. Chem. 278(41), 39,653–39,661.

    Article  PubMed  CAS  Google Scholar 

  70. Hess, A. R., Postovit, L. M., Margaryan, N. V., et al. (2005). Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res. 65(21), 9851–9860.

    Article  PubMed  CAS  Google Scholar 

  71. Hauck, C. R., Hsia, D. A., and Schlaepfer, D. D. (2002). The focal adhesion kinase-a regulator of cell migration and invasion. IUBMB Life 53(2), 115–119.

    Article  PubMed  CAS  Google Scholar 

  72. Kornberg, L. J. (1998). Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 20(8), 745–752.

    Article  PubMed  CAS  Google Scholar 

  73. Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat. (Basel) 154(1), 8–20.

    CAS  Google Scholar 

  74. Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15(6), 740–746.

    Article  PubMed  CAS  Google Scholar 

  75. Davies, M., Robinson, M., Smith, E., Huntley, S., Prime, S, and Paterson, I. (2005). Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J. Cell Biochem. 95(5), 918–931.

    Article  PubMed  CAS  Google Scholar 

  76. Janda, E., Lehmann, K., Killisch, I., et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156(2), 299–313.

    Article  PubMed  CAS  Google Scholar 

  77. Brabletz, T., Hlubek, F., Spaderna, S., et al. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2), 56–65.

    Article  PubMed  CAS  Google Scholar 

  78. Liebner, S., Cattelino, A., Gallini, R., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J. Cell Biol. 166(3), 359–367.

    Article  PubMed  CAS  Google Scholar 

  79. Huber, M. A., Kraut, N., and Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17(5), 548–558.

    Article  PubMed  CAS  Google Scholar 

  80. Bharti, A. C. and Aggarwal, B. B. (2002). Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem. Pharmacol. 64(5-6), 883–888.

    Article  PubMed  CAS  Google Scholar 

  81. Kucharczak, J., Simmons, M. J., Fan, Y., and Gelinas, C. (2003). To be, or not to be: NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22(56), 8961–8982.

    Article  PubMed  CAS  Google Scholar 

  82. Bauer, G. (2000). Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res. 20(6B), 4115–4139.

    PubMed  CAS  Google Scholar 

  83. Ernst, P. (1999). Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol. Ther. 13(Suppl. 1), 13–18.

    Article  PubMed  Google Scholar 

  84. Boonstra, J. and Post J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337, 1–13.

    Article  PubMed  CAS  Google Scholar 

  85. Slupphaug, G., Kavli, B., and Krokan, H. E. (2003). The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. 531(1–2), 231–251.

    PubMed  CAS  Google Scholar 

  86. Fehrenbach, E., Northoff, H. (2001). Free radicals, exercise, apoptosis, and heat shock proteins. Exerc. Immunol. Rev. 7, 66–89.

    PubMed  CAS  Google Scholar 

  87. De Marzo, A. M., Meeker, A. K., Zha, S., et al. (2003). Human prostate cancer precursors and pathobiology. Urology 62(5 Suppl 1), 55–62.

    PubMed  Google Scholar 

  88. Platz, E. A. and De Marzo, A. M. (2004). Epidemiology of inflammation and prostate cancer. J. Urol. 171(2 Pt 2), S36–S40.

    Article  PubMed  Google Scholar 

  89. Mehik, A., Hellstrom, P., Sarpola, A., Lukkarinen, O., and Jarvelin, M. R. (2001). Fears, sexual disturbances and personality features in men with prostatitis: a population-based cross-sectional study in Finland. BJU Int. 88(1), 35–38.

    Article  PubMed  CAS  Google Scholar 

  90. Peyromaure, M., Ravery, V., Messas, A., Toublanc, M., Boccon-Gibod, L., and Boccon-Gibod, L. (2002). Pain and morbidity of an extensive prostate 10-biopsy protocol: a prospective study in 289 patients. J. Urol. 167(1), 218–221.

    Article  PubMed  Google Scholar 

  91. Fleshner, N. E. and Klotz, L. H. (1998). Diet, androgens, oxidative stress and prostate cancer susceptibility. Cancer Metastasis Rev. 17(4), 325–330.

    Article  PubMed  CAS  Google Scholar 

  92. Hussain, T., Gupta, S., Adhami, V. M., and Mukhtar, H. (2005). Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int. J. Cancer 113(4), 660–669.

    Article  PubMed  CAS  Google Scholar 

  93. Lin, D. W. and Nelson, P. S. (2003). The role of cyclooxygenase-2 inhibition for the prevention and treatment of prostate carcinoma. Clin. Prostate Cancer 2(2), 119–126.

    PubMed  CAS  Google Scholar 

  94. Nelson, W. G., De Marzo, A. M., Deweese, T. L., et al. (2001). Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann. NY Acad. Sci. 952, 135–144.

    Article  PubMed  CAS  Google Scholar 

  95. Maier, C., Haeusler, J., Herkommer, K., et al. (2005). Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene. Br. J. Cancer 92(6), 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  96. Nelson, W. G., De Marzo, A. M., DeWeese, T. L., and Isaacs, W. B. (2004). The role of inflammation in the pathogenesis of prostate cancer. J. Urol. 172(5 Pt 2), S6–S11; discussion S11–S12.

    Article  PubMed  CAS  Google Scholar 

  97. Seppala, E. H., Ikonen, T., Autio, V., et al. (2003). Germ-line alterations in MSR1 gene and prostate cancer risk. Clin. Cancer Res. 9(14), 5252–5256.

    PubMed  Google Scholar 

  98. Xu, J., Zheng, S. L., Komiya, A., et al. (2002). Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat. Genet. 32(2), 321–325.

    Article  PubMed  CAS  Google Scholar 

  99. Bastian, P. J., Palapattu, G. S., Lin, X., et al. (2005). Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res. 11(11), 4037–4043.

    Article  PubMed  CAS  Google Scholar 

  100. Henrique, R. and Jeronimo, C. (2004). Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur. Urol. 46(5), 660–669; discussion 669.

    Article  PubMed  CAS  Google Scholar 

  101. Rizzo, S., Attard G., and Hudson D. L. (2005). Prostate epithelial stem cells. Cell Prolif. 38(6), 363–374.

    Article  PubMed  CAS  Google Scholar 

  102. Wang, S., Garcia, A. J., Wu, M., Lawson D. A., Witte, O. N., and Wu H. (2006). Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl. Acad. Sci. USA 103(5), 1480–1485.

    Article  PubMed  CAS  Google Scholar 

  103. Xin L., Lawson, D. A., and Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl. Acad. Sci. USA 102(19), 6942–6947.

    Article  PubMed  CAS  Google Scholar 

  104. Garraway, L. A, Lin, D., Signoretti, S., et al. (2003). Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55(3), 206–218.

    Article  PubMed  Google Scholar 

  105. Religa, P., Cao, R., Bjorndahl, M., Zhou, Z., Zhu, Z., and Cao Y. (2005). Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 106(13), 4184–4190.

    Article  PubMed  CAS  Google Scholar 

  106. Tabatabai, G., Bahr, O., Mohle, R., et al. (2005). Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain 128(Pt 9), 2200–2211.

    Article  PubMed  Google Scholar 

  107. Voermans, C., van Heese, W. P., de Jong, I., Gerritsen, W. R., and van Der Schoot, C. E. (2002). Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 16(4), 650–657.

    Article  PubMed  CAS  Google Scholar 

  108. Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  109. Burger, J. A., Spoo, A., Dwenger, A., Burger, M., and Behringer, D. (2003). CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br. J. Haematol. 122(4), 579–589.

    Article  PubMed  CAS  Google Scholar 

  110. Gazitt, Y. (2004). Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 18(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  111. Uchiyama, H., Barut, B. A., Chauhan, D., Cannistra, S. A., and Anderson, K. C. (1992). Characterization of adhesion molecules on human myeloma cell lines. Blood 80(9), 2306–2314.

    PubMed  CAS  Google Scholar 

  112. Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., and McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62(6), 1832–1837.

    PubMed  CAS  Google Scholar 

  113. Cooper, C. R., Chay, C. H., and Pienta, K. J. (2002). The Role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4(3), 191–194.

    Article  PubMed  CAS  Google Scholar 

  114. Edlund, M., Miyamoto, T., Sikes, R. A., et al. (2001). Integrin expression and usage by prostate cancer cell lines on laminin substrata. Cell Growth Differ. 12(2), 99–107.

    PubMed  CAS  Google Scholar 

  115. Karhadkar, S. S., Bova, G. S., Abdallah, N., et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009), 707–712.

    Article  PubMed  CAS  Google Scholar 

  116. Sanchez, P., Hernandez, A. M., Stecca, B., et al. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. USA 101(34), 12,561–12,566.

    Article  PubMed  CAS  Google Scholar 

  117. Sheng, T., Li, C., Zhang, X., et al. (2004). Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer. 3, 29.

    Article  PubMed  CAS  Google Scholar 

  118. Edlund, M., Sung, S. Y., and Chung, L. W. (2004). Modulation of prostate cancer growth in bone microenvironments. J. Cell Biochem. 91(4), 686–705.

    Article  PubMed  CAS  Google Scholar 

  119. Hsieh, C. L., Gardner, T. A., Miao, L., Balian, G., and Chung, L. W. (2004). Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther. 11(2), 148–155.

    Article  PubMed  CAS  Google Scholar 

  120. Feldman, B. J. and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1(1), 34–45.

    Article  PubMed  CAS  Google Scholar 

  121. Bamias, A. and Dimopoulos, M. A. (2005). Thalidomide and immunomodulatory drugs in the treatment of cancer. Expert Opin. Investig. Drugs 14(1), 45–55.

    Article  PubMed  CAS  Google Scholar 

  122. Capitosti, S. M., Hansen, T. P., and Brown, M. L. (2004). Thalidomide analogues demonstrate dual inhibition of both angiogenesis and prostate cancer. Bioorg. Med. Chem. 12(2), 327–336.

    Article  PubMed  CAS  Google Scholar 

  123. Tu, S. M., Kim, J., Pagliaro, L. C., et al. (2005). Therapy tolerance in selected patients with androgen-independent prostate cancer following strontium-89 combined with chemotherapy. J. Clin. Oncol. 23(31), 7904–7910.

    Article  PubMed  CAS  Google Scholar 

  124. Kopetz, E. S., Nelson, J. B., and Carducci, M. A. (2002). Endothelin-1 as a target for therapeutic intervention in prostate cancer. Invest. New Drugs 20(2), 173–182.

    Article  PubMed  CAS  Google Scholar 

  125. Uehara, H., Kim, S. J., Karashima, T., et al. (2003). Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J. Natl. Cancer Inst. 95(6), 458–470.

    Article  PubMed  CAS  Google Scholar 

  126. Wu, J. D., Odman, A, Higgins, L. M., et al. (2005). In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin. Cancer Res. 11(8), 3065–3074.

    Article  PubMed  CAS  Google Scholar 

  127. Mantzoros, C. S., Tzonou, A., Signorello, L. B., Stampfer, M., Trichopoulos, D., and Adami, H.O. (1997). Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br. J. Cancer 76(9), 1115–1118.

    PubMed  CAS  Google Scholar 

  128. Hsieh, C. L. and Chung, L. W. (2001). New prospectives of prostate cancer gene therapy: molecular targets and animal models. Crit. Rev. Eukaryot. Gene Expr. 11(1–3), 77–120.

    PubMed  CAS  Google Scholar 

  129. Hsieh, C. L., Yang, L., Miao, L., et al. (2002). A novel targeting modality to enhance adenoviral replication by vitamin D(3) in androgen-independent human prostate cancer cells and tumors. Cancer Res. 62(11), 3084–3092.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chung, L.W.K., Huang, WC., Sung, SY., Wu, D., Odero-Marah, V., Zhau, H.E. (2007). Cancer-Host Interactions. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics