Skip to main content

Differentiation Agents and Epigenomic Therapies

An Overview and Potential Use for Prostate Cancer

  • Chapter
Prostate Cancer

Abstract

The role of epigenetics in the development and treatment of cancer continues to gain interest. Although the field of epigenetics as a therapeutic target is in its infancy, discoveries and new agents targeting epigenetics are being translated into the clinic at remarkable speed. Histone deacetylase inhibitors (HDACIs), one class of agents targeting epigenetic changes, are in phase I trials and are moving to phase II trials for several types of cancer, including prostate cancer. DNA methyl transferase inhibitors, such as 5-azacytidine, have undergone limited testing in prostate cancer. In this chapter, a summary of epigenetic targets and novel agents in general and as it relates to prostate cancer is provided.

Subjects to be covered include chromatin remodeling, chromatin modification, histone code, and effects of HDACIs and DNA methyl transferase inhibitors in laboratory and in clinical studies, with a focus on prostate cancer models and patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dix, D. (2003). On the role of genes relative to the environment in carcinogenesis. Mech. Ageing Dev. 124, 323–332.

    PubMed  Google Scholar 

  2. Nejako, A., Aranton, B., and Dix, D. (2005). Carcinogenesis: a cellular model for age-dependence. Anticancer Res. 25,1385–1389.

    PubMed  Google Scholar 

  3. Chen, C. and Kong, A. N. (2005). Dietary cancer-chemopreventive compounds: from signaling and gene expression topharmacological effects. Trends Pharmacol. Sci. 26, 318–326.

    PubMed  Google Scholar 

  4. Luch, A. (2005). Nature and nurture-lessons from chemical carcinogenesis. Nat. Rev. Cancer 5, 113–125.

    PubMed  CAS  Google Scholar 

  5. Melnikova, V. O. and Ananthaswamy, H. N. (2005). Cellular and molecular events leading to the development of skincancer. Mutat Res. 571, 91–106.

    PubMed  CAS  Google Scholar 

  6. Garber, J. E. and Offit, K. (2005). Hereditary cancer predisposition syndromes. J. Clin. Oncol. 23, 276–292.

    PubMed  Google Scholar 

  7. Hemminki, K., Li, X., and Czene, K. (2004). Familial risk of cancer: data for clinical counseling and cancer genetics.Int. J. Cancer 108, 109–114.

    PubMed  CAS  Google Scholar 

  8. Lichtenstein, P., Holm, N. V., Verkasalo, P. K., et al. (2000). Environmental and heritable factors in the causation ofcancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85.

    PubMed  CAS  Google Scholar 

  9. Feinberg, A. P. and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from theirnormal counterparts. Nature 301, 89–92.

    PubMed  CAS  Google Scholar 

  10. Feinberg, A. P. and Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153.

    PubMed  CAS  Google Scholar 

  11. Fraga, M. F., Ballestar, E., Paz, M. F., et al. (2005). Epigenetic differences arise during the lifetime of monozygotictwins. Proc. Natl. Acad. Sci. USA 102, 10,604–10,609.

    PubMed  CAS  Google Scholar 

  12. Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNAhypomethylation. Science 300, 455.

    PubMed  CAS  Google Scholar 

  13. Bjornsson, H. T., Fallin, M. D., and Feinberg, A. P. (2004). An integrated epigenetic and genetic approach to commonhuman disease. Trends Genet. 20, 350–358.

    PubMed  CAS  Google Scholar 

  14. Bennett-Baker, P. E., Wilkowski, J., and Burke, D. T. (2003). Age-associated activation of epigenetically repressedgenes in the mouse. Genetics 165, 2055–2062.

    PubMed  CAS  Google Scholar 

  15. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J. (2002). Solvent mediated interactions inthe structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113.

    PubMed  CAS  Google Scholar 

  16. Luger, K. (2003). Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135.

    PubMed  CAS  Google Scholar 

  17. Wolffe, A. P. and Hayes, J. J. (1999). Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720.

    PubMed  CAS  Google Scholar 

  18. Boeger, H., Griesenbeck, J., Strattan, J. S., and Kornberg, R. D. (2003). Nucleosomes unfold completely at a transcriptionallyactive promoter. Mol. Cell 11, 1587–1598.

    PubMed  CAS  Google Scholar 

  19. Hansen, J. C. (2002). Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, andfunctions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392.

    PubMed  CAS  Google Scholar 

  20. Cairns, B. R. (2005). Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr.Opin. Genet. Dev. 15, 185–190.

    PubMed  CAS  Google Scholar 

  21. Khorasanizadeh, S. (2004). The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272.

    PubMed  CAS  Google Scholar 

  22. Kassabov, S. R., Zhang, B., Persinger, J., and Bartholomew, B. (2003). SWI/SNF unwraps, slides, and rewraps thenucleosome. Mol. Cell 11, 391–403.

    PubMed  CAS  Google Scholar 

  23. Fan, H. Y., He, X., Kingston, R. E., and Narlikar, G. J. (2003). Distinct strategies to make nucleosomal DNA accessible.Mol. Cell 11, 1311–1322.

    PubMed  CAS  Google Scholar 

  24. Mizuguchi, G., Shen, X., Landry, J., Wu, W. H., Sen, S., and Wu, C. (2004). ATP-driven exchange of histone H2AZvariant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348.

    PubMed  CAS  Google Scholar 

  25. Cosgrove, M. S., Boeke, J. D., and Wolberger, C. (2004). Regulated nucleosome mobility and the histone code. Nat.Struct. Mol. Biol. 11, 1037–1043.

    PubMed  CAS  Google Scholar 

  26. Waterborg, J. H. (2002). Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell.Biol. 80, 363–378.

    PubMed  CAS  Google Scholar 

  27. de la Cruz, X., Lois, S., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Do protein motifs read the histone code? Bioessays 27, 164–175.

    PubMed  Google Scholar 

  28. Kasten, M., Szerlong, H., Erdjument-Bromage, H., Tempst, P., Werner, M., and Cairns, B. R. (2004). Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. Embo J. 23, 1348–1359.

    PubMed  CAS  Google Scholar 

  29. Bannister, A. J., Zegerman, P., Partridge, J. F., et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.

    PubMed  CAS  Google Scholar 

  30. Bouazoune, K., Mitterweger, A., Langst, G., et al. (2002). The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. Embo J. 21, 2430–2440.

    PubMed  CAS  Google Scholar 

  31. Yu, J., Li, Y., Ishizuka, T., Guenther, M. G., and Lazar, M. A. (2003). A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. Embo J. 22, 3403–3410.

    PubMed  CAS  Google Scholar 

  32. Boyer, L. A., Latek, R. R., and Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nat. Rev. Mol. Cell. Biol. 5, 158–163.

    PubMed  CAS  Google Scholar 

  33. Turner, B. M. (1993). Decoding the nucleosome. Cell 75, 5–8.

    PubMed  CAS  Google Scholar 

  34. Strahl, B. D. and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41–45.

    PubMed  CAS  Google Scholar 

  35. Fischle, W., Wang, Y., and Allis, C. D. (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479.

    PubMed  CAS  Google Scholar 

  36. Gray, S. G. and Ekstrom, T. J. (2001). The human histone deacetylase family. Exp. Cell Res. 262, 75–83.

    PubMed  CAS  Google Scholar 

  37. Roth, S. Y., Denu, J. M., and Allis, C. D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.

    PubMed  CAS  Google Scholar 

  38. Grozinger, C. M., Hassig, C. A., and Schreiber, S. L. (1999). Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 96, 4868–4873.

    PubMed  CAS  Google Scholar 

  39. Verdin, E., Dequiedt, F., and Kasler, H. G. (2003). Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286–293.

    PubMed  CAS  Google Scholar 

  40. Gregoretti, I. V., Lee, Y. M., and Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31.

    PubMed  CAS  Google Scholar 

  41. Waltregny, D., North, B., Van Mellaert, F., de Leval, J., Verdin, E., and Castronovo, V. (2004). Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur. J. Histochem. 48, 273–290.

    PubMed  CAS  Google Scholar 

  42. Robyr, D., Suka, Y., Xenarios, I., et al. (2002). Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446.

    PubMed  CAS  Google Scholar 

  43. Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., and Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell Biol. 24, 8467–8476.

    PubMed  CAS  Google Scholar 

  44. Zhu, P., Martin, E., Mengwasser, J., Schlag, P., Janssen, K. P., and Gottlicher, M. (2004). Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463.

    PubMed  CAS  Google Scholar 

  45. Waltregny, D., Glenisson, W., Tran, S. L., et al. (2005). Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. Faseb J. 19, 966–968.

    PubMed  CAS  Google Scholar 

  46. Choi, J. H., Kwon, H. J., Yoon, B. I., et al. (2001). Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 92, 1300–1304.

    PubMed  CAS  Google Scholar 

  47. Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001). Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. 11, 162–166.

    PubMed  CAS  Google Scholar 

  48. Kachhap, S. K., Kortenhorst, M. S. Q., Shabbeer, S., Washington, E., and Carducci, M. A. (2005). Comparison of expression of Class I and Class II histone deacetylase in prostate cancer cell lines and normal immortalized prostate epithelial cells. In: Proceedings of AARC Annual Meeting. 2005, Washington, DC.

    Google Scholar 

  49. Petrie, K., Guidez, F., Howell, L., et al. (2003). The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem. 278, 16,059–16,072.

    PubMed  CAS  Google Scholar 

  50. McGraw, S., Robert, C., Massicotte, L., and Sirard, M. A. (2003). Quantification of histone acetyltransferase and histone deacetylase transcripts during early bovine embryo development. Biol. Reprod. 68, 383–389.

    PubMed  CAS  Google Scholar 

  51. Lagger, G., O’Carroll, D., Rembold, M., et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. Embo J. 21, 2672–2681.

    PubMed  CAS  Google Scholar 

  52. Ito, K., Caramori, G., Lim, S., et al. (2002). Expression and activity of histone deacetylases in human asthmatic airways. Am. J. Respir. Crit. Care Med. 166, 392–396.

    PubMed  Google Scholar 

  53. McKinsey, T. A. and Olson, E. N. (2004). Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp. 259, 132–141; discussion 141-135, 163-139.

    PubMed  CAS  Google Scholar 

  54. Insinga, A., Minucci, S., and Pelicci, P. G. (2005). Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4, 741–743.

    PubMed  CAS  Google Scholar 

  55. Polevoda, B. and Sherman, F. (2002). The diversity of acetylated proteins. Genome Biol. 3, reviews Epub.

    Google Scholar 

  56. Neuwald, A. F. and Landsman, D. (1997). GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22, 154–155.

    PubMed  CAS  Google Scholar 

  57. Borrow, J., Stanton, V. P., Jr., Andresen, J. M., et al. (1996). The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14, 33–41.

    PubMed  CAS  Google Scholar 

  58. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959.

    PubMed  CAS  Google Scholar 

  59. Bannister, A. J. and Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643.

    PubMed  CAS  Google Scholar 

  60. Xu, W., Edmondson, D. G., and Roth, S. Y. (1998). Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol. Cell. Biol. 18, 5659–5669.

    PubMed  CAS  Google Scholar 

  61. Candau, R., Zhou, J. X., Allis, C. D., and Berger, S. L. (1997). Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. Embo J. 16, 555–565.

    PubMed  CAS  Google Scholar 

  62. Santos-Rosa, H., Valls, E., Kouzarides, T., and Martinez-Balbas, M. (2003). Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res. 31, 4285–4292.

    PubMed  CAS  Google Scholar 

  63. Bannister, A. J., Oehler, T., Wilhelm, D., Angel, P., and Kouzarides, T. (1995). Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11, 2509–2514.

    PubMed  CAS  Google Scholar 

  64. Kamei, Y., Xu, L., Heinzel, T., et al. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414.

    PubMed  CAS  Google Scholar 

  65. Herman, J. G. and Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054.

    PubMed  CAS  Google Scholar 

  66. Jones, P. A. and Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428.

    PubMed  CAS  Google Scholar 

  67. El-Osta, A., Kantharidis, P., Zalcberg, J. R., and Wolffe, A. P. (2002). Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol. Cell Biol. 22, 1844–1857.

    PubMed  CAS  Google Scholar 

  68. Lee, W. H., Morton, R. A., Epstein, J. I., et al. (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA 91,11,733–11,737.

    PubMed  CAS  Google Scholar 

  69. Gaudet, F., Hodgson, J. G., Eden, A., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492.

    PubMed  CAS  Google Scholar 

  70. Cheng, J. C., Yoo, C. B., Weisenberger, D. J., et al. (2004). Preferential response of cancer cells to zebularine. Cancer Cell 6, 151–158.

    PubMed  CAS  Google Scholar 

  71. Cornacchia, E., Golbus, J., Maybaum, J., Strahler, J., Hanash, S., and Richardson, B. (1988). Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200.

    PubMed  CAS  Google Scholar 

  72. Fang, M. Z., Wang, Y., Ai, N., et al. (2003). Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570.

    PubMed  CAS  Google Scholar 

  73. Lin, X., Asgari, K., Putzi, M. J., et al. (2001). Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 61, 8611–8616.

    PubMed  CAS  Google Scholar 

  74. Belinsky, S. A., Klinge, D. M., Stidley, C. A., et al. (2003). Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 63, 7089–7093.

    PubMed  CAS  Google Scholar 

  75. Jones, P. A. and Taylor, S. M. (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93.

    PubMed  CAS  Google Scholar 

  76. Von Hoff, D. D., Slavik, M., and Muggia, F. M. (1976). 5-Azacytidine. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann. Intern. Med. 85, 237–245.

    Google Scholar 

  77. Abele, R., Clavel, M., Dodion, P., et al. (1987). The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2′-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur. J. Cancer Clin. Oncol. 23, 1921–1924.

    PubMed  CAS  Google Scholar 

  78. Silverman, L. R., Holland, J. F., Weinberg, R. S., et al. (1993). Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7(Suppl. 1), 21–29.

    PubMed  Google Scholar 

  79. Silverman, L. R., Demakos, E. P., Peterson, B. L., et al. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429–2440.

    PubMed  CAS  Google Scholar 

  80. Gilbert, J., Baker, S. D., Donehower, R. C., Herman, J. G., DeMarzo, A., and Carducci, M. (2001). Methyltransferase (MT) activity and gene expression in tumor biopsies from patients enrolled in a phase I study of the MT inhibitor, 5-azacytidine (5AC), and the histone deacetylase inhibitor, phenylbutyrate (PB), in refractory solid tumors. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, USA, San Francisco, California, USA.

    Google Scholar 

  81. Finnin, M. S., Donigian, J. R., Cohen, A., et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193.

    PubMed  CAS  Google Scholar 

  82. Richon, V. M., Webb, Y., Merger, R., et al. (1996). Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl. Acad. Sci. USA 93, 5705–5708.

    PubMed  CAS  Google Scholar 

  83. Candido, E. P., Reeves, R., and Davie, J. R. (1978). Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–113.

    PubMed  CAS  Google Scholar 

  84. Nudelman, A., Gnizi, E., Katz, Y., et al. (2001). Prodrugs of butyric acid. Novel derivatives possessing increased aqueous solubility and potential for treating cancer and blood diseases. Eur. J. Med. Chem. 36, 63–74.

    PubMed  CAS  Google Scholar 

  85. Lu, Q., Yang, Y. T., Chen, C. S., et al. (2004). Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J. Med. Chem. 47, 467–474.

    PubMed  CAS  Google Scholar 

  86. Furumai, R., Matsuyama, A., Kobashi, N., et al. (2002). FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62, 4916–4921.

    PubMed  CAS  Google Scholar 

  87. Frey, R. R., Wada, C. K., Garland, R. B., et al. (2002). Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 12, 3443–3447.

    PubMed  CAS  Google Scholar 

  88. Vasudevan, A., Ji, Z., Frey, R. R., et al. (2003). Heterocyclic ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 13, 3909–3913.

    PubMed  CAS  Google Scholar 

  89. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. (2003). Domain-selective smallmolecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 100, 4389–4394.

    PubMed  CAS  Google Scholar 

  90. Cimini, D., Mattiuzzo, M., Torosantucci, L., and Degrassi, F. (2003). Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell. 14, 3821–3833.

    PubMed  CAS  Google Scholar 

  91. Warrener, R., Beamish, H., Burgess, A., et al. (2003). Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. Faseb J. 17, 1550–1552.

    PubMed  CAS  Google Scholar 

  92. Ruefli, A. A., Ausserlechner, M. J., Bernhard, D., et al. (2001). The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. USA 98, 10,833–10,838.

    PubMed  CAS  Google Scholar 

  93. Xu, W. S., Perez, G., Ngo, L., Gui, C. Y., and Marks, P. A. (2005). Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res. 65, 7832–7839.

    PubMed  CAS  Google Scholar 

  94. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17,174–17,179.

    PubMed  CAS  Google Scholar 

  95. Vigushin, D. M., Ali, S., Pace, P. E., et al. (2001). Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. 7, 971–976.

    PubMed  CAS  Google Scholar 

  96. Takai, N., Desmond, J. C., Kumagai, T., et al. (2004). Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res. 10, 1141–1149.

    PubMed  CAS  Google Scholar 

  97. Chiba, T., Yokosuka, O., Arai, M., et al. (2004). Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J. Hepatol. 41, 436–445.

    PubMed  CAS  Google Scholar 

  98. Coffey, D. C., Kutko, M. C., Glick, R. D., et al. (2000). Histone deacetylase inhibitors and retinoic acids inhibit growth of human neuroblastoma in vitro. Med. Pediatr. Oncol. 35, 577–581.

    PubMed  CAS  Google Scholar 

  99. Carducci, M. A., Nelson, J. B., Chan-Tack, K. M., et al. (1996). Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2, 379–387.

    PubMed  CAS  Google Scholar 

  100. Butler, L. M., Agus, D. B., Scher, H. I., et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165–5170.

    PubMed  CAS  Google Scholar 

  101. Qiu, L., Burgess, A., Fairlie, D. P., Leonard, H., Parsons, P. G., and Gabrielli, B. G. (2000). Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell. 11, 2069–2083.

    PubMed  CAS  Google Scholar 

  102. Richon, V. M., Sandhoff, T. W., Rifkind, R. A., and Marks, P. A. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97, 10,014–10,019.

    PubMed  CAS  Google Scholar 

  103. Vrana, J. A., Decker, R. H., Johnson, C. R., et al. (1999). Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18, 7016–7025.

    PubMed  CAS  Google Scholar 

  104. Sandor, V., Senderowicz, A., Mertins, S., et al. (2000). P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br. J. Cancer 83, 817–825.

    PubMed  CAS  Google Scholar 

  105. Burgess, A. J., Pavey, S., Warrener, R., et al. (2001). Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol. Pharmacol. 60, 828–837.

    PubMed  CAS  Google Scholar 

  106. Johnstone, R. W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299.

    PubMed  CAS  Google Scholar 

  107. Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., et al. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA 101, 540–545.

    PubMed  CAS  Google Scholar 

  108. Chen, Z., Clark, S., Birkeland, M., et al. (2002). Induction and superinduction of growth arrest and DNA damage gene 45 (GADD45) alpha and beta messenger RNAs by histone deacetylase inhibitors trichostatin A (TSA) and butyrate in SW620 human colon carcinoma cells. Cancer Lett. 188, 127–140.

    PubMed  CAS  Google Scholar 

  109. Henderson, C. and Brancolini, C. (2003). Apoptotic pathways activated by histone deacetylase inhibitors: implications for the drug-resistant phenotype. Drug Resist. Updat. 6, 247–256.

    PubMed  CAS  Google Scholar 

  110. Henderson, C., Mizzau, M., Paroni, G., Maestro, R., Schneider, C., and Brancolini, C. (2003). Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J. Biol. Chem. 278, 12,579–12,589.

    PubMed  CAS  Google Scholar 

  111. Zhang, X. D., Gillespie, S. K., Borrow, J. M., and Hersey, P. (2003). The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem. Pharmacol. 66, 1537–1545.

    PubMed  CAS  Google Scholar 

  112. Aron, J. L., Parthun, M. R., Marcucci, G., et al. (2003). Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102, 652–658.

    PubMed  CAS  Google Scholar 

  113. Facchetti, F., Previdi, S., Ballarini, M., et al. (2004). Modulation of pro-and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 9, 573–582.

    PubMed  CAS  Google Scholar 

  114. Burgess, A., Ruefli, A., Beamish, H., et al. (2004). Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23, 6693–6701.

    PubMed  CAS  Google Scholar 

  115. Rahman, I., Marwick, J., and Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem. Pharmacol. 68, 1255–1267.

    PubMed  CAS  Google Scholar 

  116. Rosato, R. R., Almenara, J. A., and Grant, S. (2003). The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 63, 3637–3645.

    PubMed  CAS  Google Scholar 

  117. Rosato, R. R., Wang, Z., Gopalkrishnan, R. V., Fisher, P. B., and Grant, S. (2001). Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int. J. Oncol. 19, 181–191.

    PubMed  CAS  Google Scholar 

  118. Chopin, V., Slomianny, C., Hondermarck, H., and Le Bourhis, X. (2004). Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors’ signaling and requires P21(waf1). Exp. Cell Res. 298, 560–573.

    PubMed  CAS  Google Scholar 

  119. Glaser, K. B., Staver, M. J., Waring, J. F., Stender, J., Ulrich, R. G., and Davidsen, S. K. (2003). Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2, 151–163.

    PubMed  CAS  Google Scholar 

  120. Zeng, L., Zhang, Y., Chien, S., Liu, X., and Shyy, J. Y. (2003). The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J. Biol. Chem. 278, 24,594–24,599.

    PubMed  CAS  Google Scholar 

  121. Vaghefi, H. and Neet, K. E. (2004). Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a posttranslational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 23, 8078–8087.

    PubMed  CAS  Google Scholar 

  122. Bereshchenko, O. R., Gu, W., and Dalla-Favera, R. (2002). Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613.

    PubMed  CAS  Google Scholar 

  123. Yu, X., Guo, Z. S., Marcu, M. G., et al. (2002). Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst. 94, 504–513.

    PubMed  CAS  Google Scholar 

  124. Cohen, H. Y., Lavu, S., Bitterman, K. J., et al. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell. 13, 627–638.

    PubMed  CAS  Google Scholar 

  125. Gottlicher, M., Minucci, S., Zhu, P., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J. 20, 6969–6978.

    PubMed  CAS  Google Scholar 

  126. Cohen, L. A., Marks, P. A., Rifkind, R. A., et al. (2002). Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, suppresses the growth of carcinogen-induced mammary tumors. Anticancer Res. 22, 1497–1504.

    PubMed  CAS  Google Scholar 

  127. Deroanne, C. F., Bonjean, K., Servotte, S., et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21, 427–436.

    PubMed  CAS  Google Scholar 

  128. Kwon, H. J., Kim, M. S., Kim, M. J., Nakajima, H., and Kim, K. W. (2002). Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int. J. Cancer 97, 290–296.

    PubMed  CAS  Google Scholar 

  129. Qian, D. Z., Wang, X., Kachhap, S. K., et al. (2004). The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 64, 6626–6634.

    PubMed  CAS  Google Scholar 

  130. Myzak, M. C., Karplus, P. A., Chung, F. L., and Dashwood, R. H. (2004). A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 64, 5767–5774.

    PubMed  CAS  Google Scholar 

  131. Plumb, J. A., Finn, P. W., Williams, R. J., et al. (2003). Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther. 2, 721–728.

    PubMed  CAS  Google Scholar 

  132. Butler, L. M., Webb, Y., Agus, D. B., et al. (2001). Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin. Cancer Res. 7, 962–970.

    PubMed  CAS  Google Scholar 

  133. Phillips, A. C. and Vousden, K. H. (2000). Acetyltransferases and tumour suppression. Breast Cancer Res. 2, 244–246.

    PubMed  CAS  Google Scholar 

  134. Carapeti, M., Aguiar, R. C., Goldman, J. M., and Cross, N. C. (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133.

    PubMed  CAS  Google Scholar 

  135. Zheng, Y., Thompson, P. R., Cebrat, M., et al. (2004). Selective HAT inhibitors as mechanistic tools for protein acetylation. Methods Enzymol. 376, 188–199.

    PubMed  CAS  Google Scholar 

  136. Lau, O. D., Kundu, T. K., Soccio, R. E., et al. (2000). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589–595.

    PubMed  CAS  Google Scholar 

  137. Balasubramanyam, K., Swaminathan, V., Ranganathan, A., and Kundu, T. K. (2003). Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 278, 19,134–19,140.

    PubMed  CAS  Google Scholar 

  138. Balasubramanyam, K., Altaf, M., Varier, R. A., et al. (2004). Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33,716–33,726.

    PubMed  CAS  Google Scholar 

  139. Miller, R. W. and Rubinstein, J. H. (1995). Tumors in Rubinstein-Taybi syndrome. Am. J. Med. Genet. 56, 112–115.

    PubMed  CAS  Google Scholar 

  140. Muraoka, M., Konishi, M., Kikuchi-Yanoshita, R., et al. (1996). p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12, 1565–1569.

    PubMed  CAS  Google Scholar 

  141. Gayther, S. A., Batley, S. J., Linger, L., et al. (2000). Mutations truncating the EP300 acetylase in human cancers. Nat. Genet. 24, 300–303.

    PubMed  CAS  Google Scholar 

  142. Varier, R. A., Swaminathan, V., Balasubramanyam, K., and Kundu, T. K. (2004). Implications of small molecule activators and inhibitors of histone acetyltransferases in chromatin therapy. Biochem. Pharmacol. 68, 1215–1220.

    PubMed  CAS  Google Scholar 

  143. Beck, J., Fischer, T., Rowinsky, E., et al. (2004). Phase I pharmacokinetic and pharmacodynamic study of LBH589A: a novel histone deacetylase inhibitor. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO), New Orleans, LA, USA.

    Google Scholar 

  144. Gore, L., Holden, S. N., Basche, M., et al. (2004). Updated results from a phase I trial of the histone deacetylase inhibitor MS-275 in patients with refractory solid tumors. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO).

    Google Scholar 

  145. Ryan, Q. C., Headlee, D., Acharya, M., et al. (2005). Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 23, 3912–3922.

    PubMed  CAS  Google Scholar 

  146. Carducci, M. A., Gilbert, J., Bowling, M. K., et al. (2001). A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res. 7, 3047–3055.

    PubMed  CAS  Google Scholar 

  147. Warrell, R. P., Jr., He, L. Z., Richon, V., Calleja, E., and Pandolfi, P. P. (1998). Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. 90, 1621–1625.

    PubMed  CAS  Google Scholar 

  148. Vasudev, K., Das, S., Goswami, U., and Tayal, G. (2001). Pharmacokinetics of valproic acid in patients with bipolar disorder. J. Psychopharmacol. 15, 187–190.

    PubMed  CAS  Google Scholar 

  149. Yegnasubramanian, S., Kowalski, J., Gonzalgo, M. L., et al. (2004). Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64, 1975–1986

    PubMed  CAS  Google Scholar 

  150. Maruyama, R., Toyooka, S., Toyooka, K. O., et al. (2002). Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 8, 514–519.

    PubMed  CAS  Google Scholar 

  151. Anderson, K. M., Seed, T., Meng, J., and Harris, J. E. (1995). Searle SC41661A, a selective inhibitor of 5-lipoxygenase induces apoptosis in androgen-independent human prostate (PC3) cancer cells. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology (ASCO), Los Angeles, California, USA.

    Google Scholar 

  152. Rephaeli, A., Blank-Porat, D., Tarasenko, N., et al. (2005). In vivo and in vitro antitumor activity of butyroyloxymethyldiethyl phosphate (AN-7), a histone deacetylase inhibitor, in human prostate cancer. Int. J. Cancer 116, 226–235.

    PubMed  CAS  Google Scholar 

  153. Kuefer, R., Hofer, M. D., Altug, V., et al. (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br. J. Cancer 90, 535–541.

    PubMed  CAS  Google Scholar 

  154. Thibault, A. Figg, W. D., Lush, R. M., Myers, C. E., Reed, E., and Samid, D. (1997). A phase II study of 5-aza-2′-deoxycytidine (decitabine) in metastatic, hormone-independent prostate cancer. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, USA.

    Google Scholar 

  155. Amrein, P. S., Soulieres, D., Schab, A., Lipscher, E., et al. (2003). Massachusetts General Hospital, Boston, MA; Hopital Notre-Dame, Montreal, Canada; MethylGene, Inc., Montreal, Canada; Epigenomics AG, Berlin, Germany Effect of MG98 treatment on DNA gene promoter CpG island methylation patterns in advanced head and neck carcinoma patients. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, USA.

    Google Scholar 

  156. Vidal, L. L., M; Sludden, J; Griffin, MG; et al. (2005). A Phase I and pharmacodynamic study of a 7 day infusion schedule of the DNMT1 antisense compound MG98. In, Annual meeting American Society of Clinical Oncology Proceedings.

    Google Scholar 

  157. Siu, L. L. (2000). A Phase I and pharmacokinetic (PK) study of the human DNA methyltransferase (METASE) antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. In: Proceeding of the Annual Meeting of the American Society of Clinical Oncology Proceedings, New Orleans, LA, USA.

    Google Scholar 

  158. Matsuyama, A., Shimazu, T., Sumida, Y., et al. (2002). In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. Embo J. 21, 6820–6831.

    PubMed  CAS  Google Scholar 

  159. Yoshida, M., Nomura, S., and Beppu, T. (1987). Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 47, 3688–3691.

    PubMed  CAS  Google Scholar 

  160. Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M., and Marks, P. A. (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA 101, 1241–1246.

    PubMed  CAS  Google Scholar 

  161. Richon, V. M., Emiliani, S., Verdin, E., et al. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA 95, 3003–3007.

    PubMed  CAS  Google Scholar 

  162. Remiszewski, S. W. (2003). The discovery of NVP-LAQ824: from concept to clinic. Curr. Med. Chem. 10, 2393–2402.

    PubMed  CAS  Google Scholar 

  163. Atadja, P., Gao, L., Kwon, P., et al. (2004). Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res. 64, 689–695.

    PubMed  CAS  Google Scholar 

  164. Su, G. H., Sohn, T. A., Ryu, B., and Kern, S. E. (2000). A novel histone deacetylase inhibitor identified by highthroughput transcriptional screening of a compound library. Cancer Res. 60, 3137–3142.

    PubMed  CAS  Google Scholar 

  165. Kim, Y. B., Lee, K. H., Sugita, K., Yoshida, M., and Horinouchi, S. (1999). Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 18, 2461–2470.

    PubMed  CAS  Google Scholar 

  166. Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M., and Horinouchi, S. (2001). Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA 98, 87–92.

    PubMed  CAS  Google Scholar 

  167. Miller, T. A., Witter, D. J., and Belvedere, S. (2003). Histone deacetylase inhibitors. J. Med. Chem. 46, 5097–5116.

    PubMed  CAS  Google Scholar 

  168. Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M., and Horinouchi, S. (1998). FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell. Res. 241, 126–133.

    PubMed  CAS  Google Scholar 

  169. Han, J. W., Ahn, S. H., Park, S. H., et al. (2000). Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 60, 6068–6074.

    PubMed  CAS  Google Scholar 

  170. Darkin-Rattray, S. J., Gurnett, A. M., Myers, R. W., et al. (1996). Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA 93, 13,143–13,147.

    PubMed  CAS  Google Scholar 

  171. Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.

    PubMed  CAS  Google Scholar 

  172. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S., and Beppu, T. (1993). Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268, 22,429–22,435.

    PubMed  CAS  Google Scholar 

  173. Curtin, M. and Glaser, K. (2003). Histone deacetylase inhibitors: the Abbott experience. Curr. Med. Chem. 10, 2373–2392.

    PubMed  CAS  Google Scholar 

  174. Saito, A., Yamashita, T., Mariko, Y., et al. (1999). A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA 96, 4592–4597.

    PubMed  CAS  Google Scholar 

  175. Kraker, A. J., Mizzen, C. A., Hartl, B. G., Miin, J., Allis, C. D., and Merriman, R. L. (2003). Modulation of histone acetylation by [4-(acetylamino)-N-(2-amino-phenyl) benzamide] in HCT-8 colon carcinoma. Mol. Cancer Ther. 2, 401–408.

    PubMed  CAS  Google Scholar 

  176. el-Beltagi, H. M., Martens, A. C., Lelieveld, P., Haroun, E. A., and Hagenbeek, A. (1993). Acetyldinaline: a new oral cytostatic drug with impressive differential activity against leukemic cells and normal stem cells—preclinical studies in a relevant rat model for human acute myelocytic leukemia. Cancer Res. 53, 3008–3014.

    PubMed  CAS  Google Scholar 

  177. Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., and Klein, P. S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36,734–36,741.

    PubMed  CAS  Google Scholar 

  178. Huang, L. and Pardee, A. B. (2000). Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol. Med. 6, 849–866.

    PubMed  CAS  Google Scholar 

  179. Pili, R., Kruszewski, M. P., Hager, B. W., Lantz, J., and Carducci, M. A. (2001). Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res. 61, 1477–1485.

    PubMed  CAS  Google Scholar 

  180. Yang, X., Ferguson, A. T., Nass, S. J., et al. (2000). Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 60, 6890–6894.

    PubMed  CAS  Google Scholar 

  181. Rascle, A., Johnston, J. A., and Amati, B. (2003). Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol. Cell. Biol. 23, 4162–4173.

    PubMed  CAS  Google Scholar 

  182. Nimmanapalli, R., Fuino, L., Bali, P., et al. (2003). Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. 63, 5126–5135.

    PubMed  CAS  Google Scholar 

  183. Nimmanapalli, R., Fuino, L., Stobaugh, C., Richon, V., and Bhalla, K. (2003). Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101, 3236–3239.

    PubMed  CAS  Google Scholar 

  184. Chen, L., Meng, S., Wang, H., et al. (2005). Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther. 4, 1311–1319.

    PubMed  CAS  Google Scholar 

  185. Leoni, F., Zaliani, A., Bertolini, G., et al. (2002). The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. USA 99, 2995–3000.

    PubMed  CAS  Google Scholar 

  186. Piekarz, R., Frye, R., Turner, B. M., et al. (2004). Update on the phase II trial and correlative studies of depsipeptide in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology. New Orleans, LA, USA.

    Google Scholar 

  187. Keer, H., Reid, T., and Sreedharan, S. (2002). Pivanex activity in refractory non-small cell lung cancer, a phase II study. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology. Orlando, FL, USA.

    Google Scholar 

  188. Chang, S. M., Kuhn, J. G., Robins, H. I., et al. (1999). Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J. Clin. Oncol. 17, 984–990.

    PubMed  CAS  Google Scholar 

  189. Thibault, A., Cooper, M. R., Figg, W. D., et al. (1994). A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res. 54, 1690–1694.

    PubMed  CAS  Google Scholar 

  190. Gilbert, J., Baker, S. D., Bowling, M. K., et al. (2001). A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res. 7, 2292–2300.

    PubMed  CAS  Google Scholar 

  191. Rudek, M. A., Zhao, M., He, P., et al. (2005). Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J. Clin. Oncol. 23, 3906–3911.

    PubMed  CAS  Google Scholar 

  192. Kelly, W. K., O’Connor, O. A., Krug, L. M., et al. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 23, 3923–3931.

    PubMed  CAS  Google Scholar 

  193. Kelly, W. K., Richon, V. M., O’Connor, O., et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9, 3578–3588.

    PubMed  CAS  Google Scholar 

  194. Byrd, J. C., Marcucci, G., Parthun, M. R., et al. (2005). A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105, 959–967.

    PubMed  CAS  Google Scholar 

  195. Kristeleit, R. S., Tandy, D., Atadja, P., et al. (2004). Effects of the histone deacetylase inhibitor LAQ824 on histone acetylation, Hsp70 and c-Raf in peripheral blood lymphocytes from patients wih advanced solid tumours enrolled in a phase I clinical trial. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, New Orleans, LA, USA.

    Google Scholar 

  196. Rowinsky, E. K., de Bono, J., Deangelo, D. J., van Oosterom, A., et al. (2005). Cardiac monitoring in phase I trials of a novel histone deacetylase (HDAC) inhibitor LAQ824 in patients with advanced solid tumors and hematologic malignancies. In: Proceeding of the Annual Meeting of the American Society of Clinical Oncology, Orlando, FL, USA.

    Google Scholar 

  197. Atmaca, A., Maurer, A., Heinzel, T., et al. (2004). A dose-escalating phase I study with valproic acid in patinets with advanced cancer. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, New Orleans, LA, USA.

    Google Scholar 

  198. Steele, N., Vidal, L., Plumb, J., Attard, G., et al. (2005). A phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) study of the histone deacetylase (HDAC) inhibitor PXD101 in patients (pts) with advanced solid tumours. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, Orlando, FL, USA.

    Google Scholar 

  199. Siu, L. Carducci, M., Pearce, L., Maclean, M., et al. (2005). Phase I study of isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 given as three-times weekly oral dose in patients (pts) with advanced solid tumors. In: Proceedings of the NCI/EORTC/AACR Meeting, Philadeplhia, PA, USA.

    Google Scholar 

  200. Kalita, A. Maroun, C., Bonfils, C., Gelmon, K., et al. (2005). Pharmacodynamic effect of MGCD0103, an oral isotypeselective histone deacetylase (HDAC) inhibitor, on HDAC enzyme inhibition and histone acetylation induction in Phase I clinical trials in patients (pts) with advanced solid tumors or non-Hodgkin’s lymphoma (NHL). In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology Proceedings, Orlando, Florida, USA.

    Google Scholar 

  201. Gelmon, K. Tolcher, A., Carducci, M., Reid, G. K., et al. (2005). Phase I trials of the oral histone deacetylase (HDAC) inhibitor MGCD0103 given either daily or 3x weekly for 14 days every 3 weeks in patients (pts) with advanced solid tumors. In: Proceedings of the Annual meeting of the American Society of Clinical Oncology, Orlando, FL, USA.

    Google Scholar 

  202. Cote, S., Rosenauer, A., Bianchini, A., et al. (2002). Response to histone deacetylase inhibition of novel PML/RARalpha mutants detected in retinoic acid-resistant APL cells. Blood 100, 2586–2596.

    PubMed  CAS  Google Scholar 

  203. Coffey, D. C., Kutko, M. C., Glick, R. D., et al. (2001). The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 61, 3591–3594.

    PubMed  CAS  Google Scholar 

  204. Demary, K., Wong, L., and Spanjaard, R. A. (2001). Effects of retinoic acid and sodium butyrate on gene expression, histone acetylation and inhibition of proliferation of melanoma cells. Cancer Lett. 163, 103–107.

    PubMed  CAS  Google Scholar 

  205. Minucci, S., Horn, V., Bhattacharyya, N., et al. (1997). A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 94, 11,295–11,300.

    PubMed  CAS  Google Scholar 

  206. Toma, S., Galmozzi, F., Emionite, L., Grattarola, M., Vergani L. (2003). Effects of HDACIs and retinoids on breast cancer cells. In: Annual meeting American Society of Clinical Oncology, Chicago, IL, USA.

    Google Scholar 

  207. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107.

    PubMed  CAS  Google Scholar 

  208. Boivin, A. J., Momparler, L. F., Hurtubise, A., and Momparler, R. L. (2002). Antineoplastic action of 5-aza-2′-deoxycytidine and phenylbutyrate on human lung carcinoma cells. Anticancer Drugs 13, 869–874.

    PubMed  CAS  Google Scholar 

  209. Zhu, W. G. and Otterson, G. A. (2003). The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr. Med. Chem. Anti-Canc. Agents 3, 187–199.

    CAS  Google Scholar 

  210. Keen, J. C., Yan, L., Mack, K. M., et al. (2003). A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res. Treat 81, 177–186.

    PubMed  CAS  Google Scholar 

  211. Gagnon, J., Shaker, S., Primeau, M., Hurtubise, A., and Momparler, R. L. (2003). Interaction of 5-aza-2′-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs 14, 193–202.

    PubMed  CAS  Google Scholar 

  212. Klisovic, M. I., Maghraby, E. A., Parthun, M. R., et al. (2003). Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17, 350–358.

    PubMed  CAS  Google Scholar 

  213. Primeau, M., Gagnon, J., and Momparler, R. L. (2003). Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int. J. Cancer 103, 177–184.

    PubMed  CAS  Google Scholar 

  214. Murakami, J., Asaumi, J., Maki, Y., et al. (2004). Effects of demethylating agent 5-aza-2(’)-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncol. 40, 597–603.

    PubMed  CAS  Google Scholar 

  215. Bras-Goncalves, R. A., Pocard, M., Formento, J. L., et al. (2001). Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis. Gastroenterology 120, 874–888.

    PubMed  CAS  Google Scholar 

  216. Rosato, R. R., Almenara, J. A., Yu, C., and Grant, S. (2004). Evidence of a functional role for p21WAF1/CIP1 downregulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol. Mol. Pharmacol. 65, 571–581.

    PubMed  CAS  Google Scholar 

  217. Almenara, J., Rosato, R., and Grant, S. (2002). Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 16, 1331–1343.

    PubMed  CAS  Google Scholar 

  218. Nguyen, D. M., Schrump, W. D., Chen, G. A., et al. (2004). Abrogation of p21 expression by flavopiridol enhances depsipeptide-mediated apoptosis in malignant pleural mesothelioma cells. Clin. Cancer Res 10, 1813–1825.

    PubMed  CAS  Google Scholar 

  219. Yu, C., Rahmani, M., Almenara, J., et al. (2003). Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and-resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. 63, 2118–2126.

    PubMed  CAS  Google Scholar 

  220. Yu, C., Rahmani, M., Conrad, D., Subler, M., Dent, P., and Grant, S. (2003). The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102, 3765–3774.

    PubMed  CAS  Google Scholar 

  221. Kim, J. S., Jeung, H. K., Cheong, J. W., et al. (2004). Apicidin potentiates the imatinib-induced apoptosis of Bcr-Ablpositive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br. J. Haematol. 124, 166–178.

    PubMed  CAS  Google Scholar 

  222. Kurz, E. U., Wilson, S. E., Leader, K. B., et al. (2001). The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol. Cancer Ther. 1, 121–131.

    PubMed  CAS  Google Scholar 

  223. Bhalla, K., George, P., Gutti, R., et al. (2004). A combination of histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC and AML cells with constitutively active mutant FLT-3 tyrosine kinase. In, Proceedings of the Annual Meeting of the American Society of Clinical Oncology, New Orleans, LA, USA.

    Google Scholar 

  224. Rahmani, M., Yu, C., Dai, Y., et al. (2003). Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. 63, 8420–8427.

    PubMed  CAS  Google Scholar 

  225. Kim, M. S., Blake, M., Baek, J. H., Kohlhagen, G., Pommier, Y., and Carrier, F. (2003). Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291–7300.

    PubMed  CAS  Google Scholar 

  226. Biade, S., Stobbe, C. C., Boyd, J. T., and Chapman, J. D. (2001). Chemical agents that promote chromatin compaction radiosensitize tumour cells. Int. J. Radiat. Biol. 77, 1033–1042.

    PubMed  CAS  Google Scholar 

  227. Camphausen, K., Burgan, W., Cerra, M., et al. (2004). Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. 64, 316–321.

    PubMed  CAS  Google Scholar 

  228. Camphausen, K., Scott, T., Sproull, M., and Tofilon, P. J. (2004). Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin. Cancer Res. 10, 6066–6071.

    PubMed  CAS  Google Scholar 

  229. Kim, J. H., Shin, J. H., and Kim, I. H. (2004). Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 59, 1174–1180.

    PubMed  CAS  Google Scholar 

  230. Zhang, Y., Adachi, M., Zhao, X., Kawamura, R., and Imai, K. (2004). Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int. J. Cancer 110, 301–308.

    PubMed  CAS  Google Scholar 

  231. Chinnaiyan, P., Vallabhaneni, G., Armstrong, E., Huang, S. M., and Harari, P. M. (2005). Modulation of radiation response by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys. 62, 223–229.

    PubMed  CAS  Google Scholar 

  232. Hernandez, A., Thomas, R., Smith, F., et al. (2001). Butyrate sensitizes human colon cancer cells to TRAIL-mediated apoptosis. Surgery 130, 265–272.

    PubMed  CAS  Google Scholar 

  233. Inoue, H., Shiraki, K., Ohmori, S., et al. (2002). Histone deacetylase inhibitors sensitize human colonic adenocarcinoma cell lines to TNF-related apoptosis inducing ligand-mediated apoptosis. Int. J. Mol. Med. 9, 521–525.

    PubMed  CAS  Google Scholar 

  234. Rosato, R. R., Almenara, J. A., Dai, Y., and Grant, S. (2003). Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol. Cancer Ther. 2, 1273–1284.

    PubMed  CAS  Google Scholar 

  235. Guo, F., Sigua, C., Tao, J., et al. (2004). Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/ tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 64, 2580–2589.

    PubMed  CAS  Google Scholar 

  236. Chinnaiyan, P., Varambally, S., Tomlins, S. A., Huang, S., Chinnaiyan, A. M., and Harari, P. M. (2004). Enhancing the anti-tumor activity of ErbB blockade with histone deacetylase inhibition. In: Proceedings of the Annual Meeting of the American Society of Clinical Oncology, New Orleans, LA, USA.

    Google Scholar 

  237. Fuino, L., Bali, P., Wittmann, S., et al. (2003). Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. 2, 971–984.

    PubMed  CAS  Google Scholar 

  238. Marks, P. A., Rifkind, R. A., Richon V. M., et al. (2001). Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202.

    PubMed  CAS  Google Scholar 

  239. Marks, P. A., Richon, V. M., Miller, T., and Kelly, W. K. (2004). Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kortenhorst, M.S.Q., Carducci, M.A., Shabbeer, S. (2007). Differentiation Agents and Epigenomic Therapies. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics