Skip to main content

Parvovirus Vectors

  • Chapter
Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1546 Accesses

Abstract

Parvoviruses are among the smallest of eukaryotic viruses. The association of parvovirus with cancer has been reported much before realizing the potential application of parvovirus-based vectors in cancer gene therapy. Unique characteristics of paroviruses such as nonpathogenicity, antioncogenicity, and methods of efficient recombinant vector production have drawn more attention toward utilizing parvovirus-based vectors in cancer gene therapy. Although more than 30 different parvoviruses have been identified thus far, recombinant vectors derived from adeno-associated virus (AAV), minute virus of mice (MVM), LuIII and parvovirus H1 have been successfully tested in many preclinical models of human diseases including cancer. This chapter focuses on the potential of nonreplicating and autonomously replicating parvoviral vectors in cancer gene therapy including strategies that target tumor cells directly or indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toolan HW, Ledinko N. Growth and cytopathogenecity of H-viruses in human and simian cell cultures. Nature 1965;208:812–813.

    Article  PubMed  CAS  Google Scholar 

  2. Siegl G, Bates RC, Berns KI, et al. Characteristics and taxonomy of parvoviridae. Intervirol 1987;23:61–73.

    Google Scholar 

  3. Berns KI, Bohenzky RA. Adeno-associated viruses: an update. Adv Virus Res 1987;32:243–307.

    PubMed  CAS  Google Scholar 

  4. Comtore SF, Tatersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 1987;33:91–169.

    Google Scholar 

  5. Berns KI, Labow MA. Parvovirus gene regulation. J Gen Virol 1987;68:601–614.

    PubMed  CAS  Google Scholar 

  6. Xie Q, Bu W, Bhatias, et al. The atomic structure of adeno-associated virus (AAV-2;vector for human gene therapy. Proc Natl Acad Sci U S A 2002;99:10,405–10,410.

    Article  CAS  Google Scholar 

  7. Sprecher-Goldberger S, THiry L, Lefebvre N, Dekegel D, De Halleux F. Complement-fixation antibodies to adenovirus associated virus, adenoviruses, cytomegaloviruses and herpes simplex viruses in patients with tumors and in control individuals. Amer J Epidemiol 1971;94:351–358.

    CAS  Google Scholar 

  8. George-Fries B, Biederlack S, Wolf J, Xur Hausen H. Analysis of proteins, helper dependence and sero-epidemiology of a new human parvovirus. Virology 1984;134:64–71.

    Article  Google Scholar 

  9. Rommelaere J, Cornelis JJ. Anti-neoplastic activity of parvoviruses. J.Virol Meth 1991;33:233–251.

    Article  CAS  Google Scholar 

  10. Laegendre D, Rommelaere J. Terminal regions of the NS-1 protein of the parvovirus minute virus if mice are involved in cytotoxicity and promoter trans inhibition. J Virol 1992;66:5705–5713.

    Google Scholar 

  11. Van Pachterbeke C, Tuynder M, Cosyn JP, Lespagnard D, Rommelaere JJ. Parvovirus H-l inhibits growth of short-term tumor-derived but not normal mammary tissue cultures. Int J Cancer 1993;55:672–677.

    Article  PubMed  Google Scholar 

  12. Legrand C, Rommelaere J, Caillet-Fauquet PMVM(p) NS-2 protein expression is required with NS-1 for maximal cytotoxicity in human transformed cells. Virol 1993;195:149–155.

    Article  CAS  Google Scholar 

  13. Raj K, Ogston P, Beard P. Virus-mediated killing of cells that lack p53 activity. Nature 2001;412:914–917.

    Article  PubMed  CAS  Google Scholar 

  14. Toolan HW, Ledinko N. inhibition by H-l virus of the incidence of tumors produced by adenovirus 12 in hamsters. Virol 1968;35:475–478.

    Article  CAS  Google Scholar 

  15. Bergs VV. Rat virus-mediated suppression of leukemia induction by Moloney virus in rats. Cancer Res 1969;29:1669–1673.

    PubMed  CAS  Google Scholar 

  16. Bantel-Schaal U, Zur Housen HH. Adeno-associated viruses inhibit SV40-transformed cells. Virology 1988;164:64–74.

    Article  PubMed  CAS  Google Scholar 

  17. Labow MA, Graf LH, Berns KI. Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes. Mol Cell Biol 1987;7:1320–1325.

    PubMed  CAS  Google Scholar 

  18. Rhode SL, Richard SM. Characterization of the trans-activation-responsive element of the parvovirus H-l P38 promoter. J Virol 1987;61:2807–2815.

    PubMed  CAS  Google Scholar 

  19. Bradenburger A, Legendre D, Avalosse B, Rommelaere J. NS-1 and NS-2 proteins may act synergistically in the cytopathogenecity of parvovirus MVMp. Virol 1990;174:576–584.

    Article  Google Scholar 

  20. Antoni BA, Rabson AB, Miller IL, Trempe PJ, Chejanovski N, Careter BJ. Adeno-associated virus rep protein inhibits human immunodeficiency virus type 1 production in human cells. J Virol 1990;65:396–404.

    Google Scholar 

  21. Skiadopoulos MH, Faust EA. Mutational analysis of conserved tyrosines in the NS-1 protein of the parvovirus minute virus of mice. Virology 1993;194:509–517.

    Article  PubMed  CAS  Google Scholar 

  22. Vanacker JM, Laudet V, Adelmant G, Stehelin D, Rommelaere J. Interconnection between thyroid hormone signaling pathways and parvovirus cytotoxic functions. J Virol 1993;67:7668–7672.

    PubMed  CAS  Google Scholar 

  23. Roth JA, Cristiano RJ. Gene Therapy for cancer: what have we done and where are we going? J. Natl Cancer Inst 1997;89:21–39.

    Article  PubMed  CAS  Google Scholar 

  24. Tepper RI, Mule JJ. Experimental and clinical studies of cytokine gene-modified tumor cells. Hum GeneTher 1994;5:153–164.

    CAS  Google Scholar 

  25. Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy. Ann Rev Immunol 1995;13:399–415.

    Article  CAS  Google Scholar 

  26. Jaffee EM. Immunotherapy of cancer. Ann NY Acad Sci 1991;886:67–72.

    Article  Google Scholar 

  27. Tagawa M. Cytokine therapy for cancer. Curr Pharm Des 2000;6:681–699.

    Article  PubMed  CAS  Google Scholar 

  28. Tilting T, Storkus WJ, Lotze MT Gene-based strategies for the immunotherapy of cancer. J Mol Med 1997;75:478–491.

    Article  Google Scholar 

  29. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigenpresenting cells in vitro and in vivo. J Exp Med 1996;184:465–472.

    Article  PubMed  CAS  Google Scholar 

  30. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998;16:364–369.

    Article  PubMed  CAS  Google Scholar 

  31. De Veerman M, Heirman C, Van Meirvenne S. et al. Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 1999;162:144–151.

    PubMed  Google Scholar 

  32. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997;158:3270–3276.

    PubMed  CAS  Google Scholar 

  33. Tillman BW, deGruijl TD, Luykx-de Bakker SZ, et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 1999;162:6378–6383.

    PubMed  CAS  Google Scholar 

  34. Tillman BW, Hayes TL, de Gruijl TD, Douglas JT, Curiel DT. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 2000;60:5456–5463.

    PubMed  CAS  Google Scholar 

  35. van Gool SW, Barcy S, Devos S. CD80 (B7-1) and CD86 (B7-2): potential targets for immunotherapy? Res Immunol 1995;146:183–196.

    Article  PubMed  Google Scholar 

  36. Hwu P, Yannelli J, Kriegler M, et al. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-alpha cDNA for the gene therapy of cancers in humans. J Immunol 1993;150:4104–4115.

    PubMed  CAS  Google Scholar 

  37. Dranoff G, Mulligan R. Gene transfer as cancer therapy. Adv Immunol 1995;58:417–454.

    PubMed  CAS  Google Scholar 

  38. Wwasha PD, Zielske SP, Roth JC, Ballas CB, Bowman JE, Gerson SL. Cancer gene therapy: scientific basis. Ann Rev Med 2002;53:437–452.

    Article  Google Scholar 

  39. Reid T, Galanis E, Abbruzzese J, et al. Intra-arterial administration of a replication-selective adenovirus (d11520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 2001;8:1618–1626.

    Article  PubMed  CAS  Google Scholar 

  40. Habib N, Salama H, Abd El, et al. Clinical trial of ElB-deleted adenovirus (d11520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther 2002;9:254–259.

    Article  PubMed  CAS  Google Scholar 

  41. Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002;9:979–986.

    Article  PubMed  CAS  Google Scholar 

  42. Kubo H, Gardner TA, Wada Y, et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Human Gene Ther 2003;14:227–241.

    Article  CAS  Google Scholar 

  43. Savontaus MJ, Sauter BV, Huang TG, Woo SL. Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther 2002;9:972–979.

    Article  PubMed  CAS  Google Scholar 

  44. Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982;79:2077–2081.

    Article  PubMed  CAS  Google Scholar 

  45. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989;63:3822–3838.

    PubMed  CAS  Google Scholar 

  46. Maxwell IH, Terrell KL, Maxwell F. Autonomous parvovirus vectors. Methods 2002;28:168–181.

    CAS  Google Scholar 

  47. Russell SJ, Brandenburger A, Flemming CL, Collins MK, Rommelaere J. Transformation-dependent expression of interleukin genes delivered by a recombinant parvovirus. J Virol 1992;66:2821–2828.

    PubMed  CAS  Google Scholar 

  48. Kestler J, Neeb B, Struyf S. et al. cis requirements for the efficient production of recombinant DNA vectors based on autonomous parvoviruses. Human Gene Ther 1999;10:1619–1632.

    Article  CAS  Google Scholar 

  49. Brandenburger A, Russell S. A novel packaging system for the generation of helper-free oncolytic MVM vector stocks. Gene Ther 1996;3:927–931.

    PubMed  CAS  Google Scholar 

  50. El Bakkouri K, Clement N, Velu A, Bradenburger A. Amplification of MVM(p) vectors through serial infection of a new packaging cell line. Tumor Targeting 1999;4:210–217.

    Google Scholar 

  51. Clement N, Velu T, Brandenburger A. Construction and production of oncotropic vectors, derived from MVM(p), that share reduced sequence homology with helper plasmids. Cancer Gene Ther 2002;9:762–770.

    Article  PubMed  CAS  Google Scholar 

  52. Clement N, Avalosse B, El Bakkouri K, Velu T, Brandenburger A. Cloning and sequencing of defective particles derived from the autonomous parvovirus minute virus of mice for the construction of vectors with minimal cis-acting sequences. J Virol 2001;75:1284–1293.

    Article  PubMed  CAS  Google Scholar 

  53. Hagg A, Menten P, Van Damme J, Dinsart C, Rommelaere J, Cornelius JJ. Highly efficient transduction and expression of cytokine genes is human tumor cells by means of autonomous parvovirus vectors: generation of antitumor response in mice. Hum Gene Ther 2000;11:597–609.

    Article  Google Scholar 

  54. Geise NA, Raykov Z, Demartino L, et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine in immunocompetent mice. Cancer Gene Ther 2002;9:432–442.

    Article  Google Scholar 

  55. Malerba M, Daeffler L, Rommelaere J, Iggo RD. Replicating parvoviruses that target colon cancer cells. J Virol 2003;77:6683–6691.

    Article  PubMed  CAS  Google Scholar 

  56. Ozawak K, Kurtzman G, Young NS. Replication of the B19 parvovirus in human bone marrow cell cultures. Science 1986;233:883–886.

    Article  Google Scholar 

  57. Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for parvovirus B19. Science 1993;262:114–117.

    Article  PubMed  CAS  Google Scholar 

  58. Weigel-Kelly KA, Yoder MC, Srivastave A. Recombinant human parvovirus B19 vectors: Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. J Virol 2001;75:4110–4116.

    Article  Google Scholar 

  59. Wiegel-Kelly KA, Yoder MC, Srivastava A. α5βl integrin as a cellular co-receptor for human parvovirus B19: requirement of functional activation of β integrin for viral entry. Blood 2003;102:3927–3933.

    Article  CAS  Google Scholar 

  60. Wang X-S, Yodr MC, Zhou SZ, Srivastava A. Parvovirus B19 promoter at map unit 6 confers autonomous replication competence and erythroid specificity to adeno-associated virus 2 in primary human hematopoietic progenitor cells. Proc Natl Acad Sci U S A 1995;92:12,416–12,420.

    CAS  Google Scholar 

  61. Ponnashagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A. Recombinant human B19 vectors: erythroid cell-specific delivery and expression of transduced genes. J Virol 1998;75:5224–5230.

    Google Scholar 

  62. Blacklow NR. In: Parvoviruses and Human Disease, CRC Press, Boca Raton, FL, 1988.

    Google Scholar 

  63. De la Maza LM, Carter BJ. Inhibition of adenovirus oncogenicity in hamsters by adeno-associated virus DNA. J Natl Cancer Inst 1981;67:1323–1326.

    PubMed  Google Scholar 

  64. Zabner J, Seiler M, Walters R, et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 2000;74:3852–3858.

    Article  PubMed  CAS  Google Scholar 

  65. Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000;2:619–623.

    Article  PubMed  CAS  Google Scholar 

  66. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002;99:11,854–11,859.

    CAS  Google Scholar 

  67. Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 2003;77:7034–7040.

    Article  PubMed  CAS  Google Scholar 

  68. Sarkar R, Tetreault R, Gao G, et al. Total correction of hemophilia A mice with canine FVIII using an AAV8 serotype. Blood 2004;103:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  69. Grimm D, Kay MA. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Current Gene Ther 2003;3:281–304.

    Article  CAS  Google Scholar 

  70. Cukor G, Blacklow NR, Kibrick S, Swan IC. Effect of adeno-associated virus on cancer expression by herpesvirus-transformed hamster cells. J Natl Cancer Inst 1975;55:957–959.

    PubMed  CAS  Google Scholar 

  71. Hermonat PL, Meyers C, Parham GP, Santin, AD. Inhibition/stimulation of bovine papillomavirus by adeno-associated virus is time as well as multiplicity dependent. Virology 1998;247:240–250.

    Article  PubMed  CAS  Google Scholar 

  72. Hermonat PL. Adeno-associated virus inhibits human papillomavirus type 16: a viral interaction implicated in cervical cancer. Cancer Res 1994;54:2278–2281.

    PubMed  CAS  Google Scholar 

  73. Horer M, Weger S, Butz K, Hoppe-Seyler F, Geisen C, Kleinschmidt JA. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J Virol 1995;69:5485–5496.

    PubMed  CAS  Google Scholar 

  74. Hermonat PL, Plott RT, Santin AD, Parham GP, Flick JT. Adeno-associated virus Rep78 inhibits oncogenic transformation of primary human keratinocytes by a human papillomavirus type 16-ras chimeric. Gynecol Oncol 1997;66:487–494.

    Article  PubMed  CAS  Google Scholar 

  75. Wu FY, Wu CY, Lin CH, Wu CH. Suppression of tumorigenicity in cervical carcinoma HeLa cells by an episomal form of adeno-associated virus. Int J Oncol 1999;15:101–106.

    PubMed  CAS  Google Scholar 

  76. Zhan D, Santin AD, Liu Y, Parham GP, Li C, Meyers C, Hermonat PL. Binding of the human papillomavirus type 16 p97 promoter by the adeno-associated virus Rep78 major regulatory protein correlates with inhibition. J Biol Chem 1999;274:31,619–31,624.

    Article  CAS  Google Scholar 

  77. Strickler HD, Viscidi R, Escoffery C, et al. Adeno-associated virus and development of cervical neo-plasia. J Med Virol 1999;59:60–65.

    Article  PubMed  CAS  Google Scholar 

  78. Hermonat PL. Down-regulation of the human c-fos and c-myc proto-oncogene promoters by adenoassociated virus Rep78. Cancer Lett 1994;81:129–136.

    Article  PubMed  CAS  Google Scholar 

  79. Sauden P, Vlach J, Beard P Inhibition of S-phase progression by adeno-associated virus Rep78 protein is mediated by hypophosphorylated pRb. EMBO J 2000;19:4351–4361.

    Article  Google Scholar 

  80. Schmidt M, Afione S, Kotin RM. Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 2000;74:9441–9450.

    Article  PubMed  CAS  Google Scholar 

  81. Furman P, McGujirt P, Keller P, Fyfe J, Elion G. Inhibition by acyclovir of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information. Virology 1980;102:420–430.

    Article  PubMed  CAS  Google Scholar 

  82. Su H, Chang JC, Xu SM, Kan YW. Selective killing of AFP-positive hepatocellular carcinoma cells by adeno-associated virus transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 1996;7:463–470.

    PubMed  CAS  Google Scholar 

  83. Su H, Lu R, Chang JC, Kan JW. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc Natl Acad Sci U S A 1997;94:13,891–13,896.

    CAS  Google Scholar 

  84. Su H, Lu R, Ding R, Kan YW. Adeno-associated viral-mediated gene transfer to hepatoma: thymi-dine kinase/interleukin 2 is more effective in tumor killing in a non-ganciclovir (GCV)-treated than in GCV-treated animals. Mol Ther 2000;1:509–525.

    Article  PubMed  CAS  Google Scholar 

  85. Mizuno M, Yoshida J, Colosi P, Kurtzman G. Adeno-associated virus vector containing thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res 1998;89:76–80.

    PubMed  CAS  Google Scholar 

  86. Maass G, Bogedain C, Scheer U, et al. Recombinant adeno-associated virus for the generation of autologous, gene-modified tumor vaccines: evidence for high transduction efficiency into primary epithelial cancer cells. Hum Gene Ther 1998;9:1049–1059.

    PubMed  CAS  Google Scholar 

  87. Qazilbash MH, Xiao X, Seth P, Cowan KH, Walsh CE. Cancer gene therapy using a novel adenoassociated virus vector expressing human wild-type p53. Gene Ther 1997;4:675–682.

    Article  PubMed  CAS  Google Scholar 

  88. Folkman J, Cole P, Zimmerman S. Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 1996;164:491–502.

    Article  Google Scholar 

  89. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  90. Gasparini G. The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999;58:17–38.

    Article  PubMed  CAS  Google Scholar 

  91. Feldman AL, Libutti SK. Progress in antiangiogenic gene therapy of cancer. Cancer 2000;89:1181–1194.

    Article  PubMed  CAS  Google Scholar 

  92. Malonne H, Langer I, Kiss R, Atassi G. Mechanisms of tumor angiogenesis and therapeutic implications: angiogenesis inhibitors. Clin Exp Metastasis 1999;17:1–14.

    Article  PubMed  CAS  Google Scholar 

  93. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci U S A 2000;97:4802–4807.

    Article  PubMed  CAS  Google Scholar 

  94. Feldman AL, Restifo NP, Alexander HR, et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000;60:1503–1506.

    PubMed  CAS  Google Scholar 

  95. Chen CT, Lin J, Li Q, et al. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther 2000;l1:1983–1996.

    Article  Google Scholar 

  96. Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci U S A 1998;95:8795–8800.

    Article  PubMed  CAS  Google Scholar 

  97. Regulier E, Paul S, Marigliano M, et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther 2001;8:45–54.

    Article  PubMed  CAS  Google Scholar 

  98. Schimmenti S, Boesen J, Claassen EA, Valerio D, Einerhand MR Long-term genetic modification of rhesus monkey hematopoietic cells following transplantation of adenoassociated virus vector-transduced CD34+ cells. Hum Gene Ther 1998;9:2727–2734.

    Article  PubMed  CAS  Google Scholar 

  99. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257–261.

    Article  PubMed  CAS  Google Scholar 

  100. Maass G, Bogedain C, Scheer U, et al. Recombinant adeno-associated virus for the generation of autologous, gene-modified tumor vaccines: evidence for a high transduction efficiency into primary epithelial cancer cells. Hum Gene Ther 1998;9:1049–1059.

    PubMed  CAS  Google Scholar 

  101. Hasumi Y, Mizukami H, Urabe M, et al. Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Res 2002;62:2019–2023.

    PubMed  CAS  Google Scholar 

  102. Shi W, Teschendorf C, Muzyczka N, Sieman DW. Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo. Can Gene Ther 2002;9:513–521.

    Article  CAS  Google Scholar 

  103. Ma HI, Lin SZ, Chiang YH, et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 2002;9:2–11.

    Article  PubMed  CAS  Google Scholar 

  104. Lalani AS, Chang B, Lin J, et al. Anti-tumor efficacy of human angiostatin using liver-mediated adeno-associated virus gene therapy. Mol Ther 2004;9:56–66.

    Article  PubMed  CAS  Google Scholar 

  105. Ponnazhagan S, Mahendra G, Kumar S, et al. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res 2004;64:1781–1787.

    Article  PubMed  CAS  Google Scholar 

  106. Boehm T, Folkman J, Browder T, Reilly MO. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997;390:404–407.

    Article  PubMed  CAS  Google Scholar 

  107. Shi W, Teschendorf C, Muzyczka N, Siemann DW. Gene therapy delivery of endostatin enhances the treatment efficacy of radiation. Radiother Oncol 2003;66:1–9.

    Article  PubMed  CAS  Google Scholar 

  108. Wendtner CM, Nolte A, Mangold E, et al. Gene transfer of the costimulatory molecules B7-1 and B7-2 into human multiple myeloma cells by recombinant adeno-associated virus enhances the cytolytic T cell response. Gene Ther 1997;4:726–735.

    Article  PubMed  CAS  Google Scholar 

  109. Anderson R, Macdonald I, Corbett T, Hacking G, Lowdell MW, Prentice HG. Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther 1997;8:1125–1135.

    PubMed  CAS  Google Scholar 

  110. Manning WC, Paliard X, Zhou S, et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 1997;71:7960–7962.

    PubMed  CAS  Google Scholar 

  111. Clary BM, Coveney EC, Blazer DG, et al. Active immunization with tumor cells transduced by a novel AAV plasmid-based gene delivery system. J Immunother 1997;20:26–37.

    Article  PubMed  CAS  Google Scholar 

  112. Vieweg J, Boczkowski D, Roberson KM, et al. Efficient gene transfer with adeno-associated virusbased plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res 1995;55:2366–2372.

    PubMed  CAS  Google Scholar 

  113. Chiorini JA, Wendtner CM, Urcelay E, Safer B, Hallek M, Kotin RM. High-efficiency transfer of the T cell co-stimulatory molecule B7-2 to lymphoid cells using high-titer recombinant adeno-associated virus vectors. Hum GeneTher 1995;6:1531–1541.

    CAS  Google Scholar 

  114. Liu DW, Tsao YP, Kung JT, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol 2000;74:2888–2894.

    Article  PubMed  CAS  Google Scholar 

  115. Jooss K, Yang Y, Fisher KJ, Wilson JM. Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998;5:4212–4223.

    Google Scholar 

  116. Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999;92:67–75.

    Article  PubMed  CAS  Google Scholar 

  117. Zhang Y, Chirmule N, Gao GP, Wilson J. CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000;74:8003–8010.

    Article  PubMed  CAS  Google Scholar 

  118. Liu Y, Santin AD, Mane M, Chiriva-Internati M, Parham GP, Ravaggi A, Hermonat PL. Transduction and utility of the granulocyte-macrophage colony-stimulating factor gene into monocytes and dendritic cells by adeno-associated virus. J Interferon Cytokine Res 2000;20:21–30.

    Article  PubMed  Google Scholar 

  119. Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR. Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J Virol 2001;75:9493–9501.

    Article  PubMed  CAS  Google Scholar 

  120. Ponnazhagan S, Mukherjee P, Wang X-S, et al. Adeno-associated virus 2-mediated transduction of primary human bone marrow derived CD34+ hematopoietic progenitor cells: Donor variation and correlation of expression with cellular differentiation. J Virol 1997;71:8262–8267.

    PubMed  CAS  Google Scholar 

  121. McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 2001;8:1248–1254.

    Article  PubMed  CAS  Google Scholar 

  122. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by doublestranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003;10:2105–2111.

    Article  PubMed  CAS  Google Scholar 

  123. Klein-Bauernschmitt P, Von Knebel Doeberitz M, Ehrbar M, Geletneky K, Kleinschmidt J. Improved efficacy of chemotherapy by parvovirus-mediated sensitization of human tumor cells. Applied Tumor Virol 1996;32A:1774–1780.

    CAS  Google Scholar 

  124. Duverger V, Sartorius U, Klein-Bauernschmitt P, Krammer PH, Schlehofer Jr. Enhancement of cisplatin-induced apoptosis by infection with adeno-associated virus type 2. Cancer 2002;97:706–712.

    CAS  Google Scholar 

  125. Rendahl KG, Leff SE, Otten GR, et al. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat Biotechnol 1999;16:757–761.

    Article  Google Scholar 

  126. Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999;283:88–91.

    Article  PubMed  CAS  Google Scholar 

  127. Rivera VM, Ye X, Courage NL, et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci U S A 1999;15:8657–8662.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ponnazhagan, S. (2007). Parvovirus Vectors. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics