Skip to main content

Vesicular Stomatitis Virus and RNA Viruses as Gene Therapy Vectors

  • Chapter
Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1539 Accesses

Abstract

The ability of RNA viruses to efficiently reproduce in transformed cells was first recognized nearly 100 yr ago. However, it wasn’t until the late 1990s that a resurrection of the interest in the ability of certain viruses to preferentially replicate in malignant cells and less so in normal cells occurred, the curiosity being to evaluate whether these agents could be useful in cancer therapy regimes. It was following these reports, demonstrating that DNA viruses such as adenovirus and herpes simplex virus (HSV) could act as antineoplastic agents, that similar encouraging investigations were conducted using RNA viruses such as reovirus and Newcastle Disease virus, vesicular stomatitis Virus (VSV), and measles virus (MV). Here we will review the use of RNA viruses as oncolytic agents in the treatment of malignant disease, focusing on the negative-stranded RNA virus, VSV. The general mechanisms by which oncolytic viruses such as VSV achieve their antitumor effectiveness and specificity are discussed, including the role of the innate immune system involving the interferon response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martuza RL, Malick A, Markert, JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991;252:854–856.

    Article  PubMed  CAS  Google Scholar 

  2. Ring CJ. Cytolytic viruses as potential anti-cancer agents. J Gen Virol 83:491–502.

    Google Scholar 

  3. Stanziale SF, Fong Y. Novel approaches to cancer therapy using oncolytic viruses. 2002; Curr Mol Med 3:61–71.

    Article  Google Scholar 

  4. Steele TA. Recent developments in the virus therapy of cancer. Proc Soc Exp Biol Med 2000;223: 118–127.

    Article  PubMed  CAS  Google Scholar 

  5. Zwiebel JA. Cancer gene and oncolytic virus therapy. Semin Oncol 2001;28:336–343.

    Article  PubMed  CAS  Google Scholar 

  6. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  7. Parr MJ, Manome Y, Tanaka T, Wen P, Kufe DW, Kaelin WG, Jr, Fine HA. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat Med 1997;3:1145–1149.

    Article  PubMed  CAS  Google Scholar 

  8. Riley DJ, Nikitin AY, Lee WH. Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/-mice. Nat Med 1996;2:1316–1321.

    Article  PubMed  CAS  Google Scholar 

  9. Latham JP, Searle PF, Mautner V, James ND. Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 2000;60:334–341.

    PubMed  CAS  Google Scholar 

  10. Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000;18:723–727.

    Article  PubMed  CAS  Google Scholar 

  11. Kanerva A, Hemminki A. Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110:475–480.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci U S A 1996;93:9160–9165.

    Article  PubMed  CAS  Google Scholar 

  13. Kirn D, Martuza RL, Zwiebel J. Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med 7:781–787.

    Google Scholar 

  14. Boviatsis EJ, Chase M, Wei MX, et al. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum Gene Ther 2001;5:183–191.

    Google Scholar 

  15. McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001;l: 130–141.

    Article  CAS  Google Scholar 

  16. Leimig T, Brenner M, Ramsey J, Vanin E, Blaese M, Dilloo D. High-efficiency transduction of freshly isolated human tumor cells using adenoviral interleukin-2 vectors. Hum Gene Ther 1996;7:1233–1239.

    PubMed  CAS  Google Scholar 

  17. Paillard F. The search for the “best” cytokine to induce antitumor immunity. Hum Gene Ther 1998;9:2457–2458.

    Article  PubMed  CAS  Google Scholar 

  18. Bluming AZ, Ziegler JL. Regression of Burkitt’s lymphoma in association with measles infection. Lancet 1971;2:105–106.

    Article  PubMed  CAS  Google Scholar 

  19. Hammon WM, Yohn DS, Casto BC, Atchison RW. Oncolytic Potentials of Nonhuman Viruses for Human Cancer. I. Effects of Twenty-Four Viruses on Human Cancer Cell Lines. J Natl Cancer Inst 1963;31:329–345.

    PubMed  CAS  Google Scholar 

  20. Russell SJ. RNA viruses as virotherapy agents. Cancer Gene Ther 2002;9:961–996.

    Article  PubMed  CAS  Google Scholar 

  21. Balachandran S, Barber GN. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 2000;50:135–138.

    PubMed  CAS  Google Scholar 

  22. Boehme KW, Compton T. Innate sensing of viruses by toll-like receptors. J Virol 2004;78:7867–7873.

    Article  PubMed  CAS  Google Scholar 

  23. Balachandran S, Barber GN. Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 2004;5:51–65.

    Article  PubMed  CAS  Google Scholar 

  24. Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science 1998;282:1332–1334

    Article  PubMed  CAS  Google Scholar 

  25. Dietzschold B, Rupprecht CE, Fu AF, Koprowski H. Rhabdoviruses. In:. Fields Virology, 3rd ed., Howley, et al., eds. Philadelphia: Lippincott-Raven Publishers, 1996; pp. 1137–1159.

    Google Scholar 

  26. Wagner RR. a. R., J.K. Rhabdoviridae: The Viruses and Their Replication, p. 1121–1135. In Fields Virology, 3rd ed., D. M. K. B.N. Fields, P.M. Howley, et al., eds. Philadelphia: Lipincott-Raven Publishers, 1996; pp. 1121–1135.

    Google Scholar 

  27. Ball LA, Pringle CR, Flanagan B, Perepelitsa VP, Wertz GW. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 1999;73:4705–4712.

    PubMed  CAS  Google Scholar 

  28. Carneiro FA, Bianconi ML, Weissmuller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol 2002;76:3756–3764

    Article  PubMed  CAS  Google Scholar 

  29. Jeetendra E, Robison CS, Albritton LM, Whitt MA. The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 2002;76:12,300–12,311.

    Article  CAS  Google Scholar 

  30. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999;286:2156–2159.

    Article  PubMed  CAS  Google Scholar 

  31. Enninga J, Levy DE, Blobel G, Fontoura BM. Role of nucleoporin induction in releasing an mRNA nuclear export block. Science 2002;295:1523–1525.

    Article  PubMed  CAS  Google Scholar 

  32. Petersen JM, Her LS, Varvel V, Lund E, Dahlberg JE. The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 2000;20:8590–8601.

    Article  PubMed  CAS  Google Scholar 

  33. von Kobbe C, van Deursen JM, Rodrigues JP, et al. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol Cell 2000;6:1243–1252.

    Article  Google Scholar 

  34. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000;6:821–825.

    Article  PubMed  CAS  Google Scholar 

  35. Pattnaik AK, Ball LA, LeGrone AW, Wertz GW. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 1992;69:1011–1020.

    Article  PubMed  CAS  Google Scholar 

  36. Kim L, Morley PS, McCluskey BJ, Mumford EL, Swenson SL, Salman MD. Oral vesicular lesions in horses without evidence of vesicular stomatitis virus infection. J Am Vet Med Assoc 2000;216:1399–1404.

    Article  PubMed  CAS  Google Scholar 

  37. Mumford EL, McCluskey BJ, Traub-Dargatz JL, Schmitt BJ, Salman MD. Public veterinary medicine: public health. Serologic evaluation of vesicular stomatitis virus exposure in horses and cattle in 1996. J Am Vet Med Assoc 1996;213:1265–1269.

    Google Scholar 

  38. Bi Z, Barna M, Komatsu T, Reiss CS. Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 1995;69:6466–6472.

    PubMed  CAS  Google Scholar 

  39. Plakhov IV, Arlund EE, Aoki S, Reiss CS. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 1995;209:257–262.

    Article  PubMed  CAS  Google Scholar 

  40. van den Pol AN, Dalton KP, Rose JK. Relative neurotropism of a recombinant rhabdovirus expressing a green fluorescent envelope glycoprotein. J Virol 2002;76:1309–1327.

    PubMed  Google Scholar 

  41. Thomsen AR, Nansen A, Andersen S, Johansen J, Marker O, Christensen JP. Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus. Int Immunol 1997;9:1757–1766.

    Article  PubMed  CAS  Google Scholar 

  42. Gresser I, Tovey MG, Bourali-Maury C. Efficacy of exogenous interferon treatment initiated after onset of multiplication of vesicular stomatitis virus in the brains of mice. J Gen Virol 1975;27:395–398.

    Article  PubMed  CAS  Google Scholar 

  43. Meurs E, Chong K, Galabru J, et al. Molecular cloning and characterization of the human doublestranded RNA-activated protein kinase induced by interferon. Cell 1990;62:379–390.

    Article  PubMed  CAS  Google Scholar 

  44. Hershey JW. Translational control in mammalian cells. Annu Rev Biochem 1991;60:717–755.

    Article  PubMed  CAS  Google Scholar 

  45. Kimball SR. Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 1999;31:25–29.

    Article  PubMed  CAS  Google Scholar 

  46. Perkins DJ, Barber GN. Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol Cell Biol 2004;24:2025–2040.

    Article  PubMed  CAS  Google Scholar 

  47. Balachandran S, Roberts PC, Brown LE, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000;13:129–141.

    Article  PubMed  CAS  Google Scholar 

  48. Abraham N, Stojdl DF, Duncan PI, et al. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 1999;274:5953–5962.

    Article  PubMed  CAS  Google Scholar 

  49. Stojdl DF, Abraham N, Knowles S, et al. The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol 2000;74:9580–9585.

    Article  PubMed  CAS  Google Scholar 

  50. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998;67:227–264.

    Article  PubMed  CAS  Google Scholar 

  51. Chadha KC, Ambrus JL, Jr, Dembinski W, Ambrus JL, Sr. Interferons and interferon inhibitory activity in disease and therapy. Exp Biol Med (Maywood) 2004;229:285–290.

    CAS  Google Scholar 

  52. Tough DF. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma 2004;45:257–264.

    Article  PubMed  CAS  Google Scholar 

  53. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 2004;24:439–454.

    Article  PubMed  CAS  Google Scholar 

  54. Durbin JE, Hackenmiller T, Simon MC, Levy DE. Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell 1996;84:443–450.

    Article  PubMed  CAS  Google Scholar 

  55. Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996;84:431–442.

    Article  PubMed  CAS  Google Scholar 

  56. Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994;264:1918–1921.

    Article  PubMed  CAS  Google Scholar 

  57. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 4:499–511.

    Google Scholar 

  58. Pasare C, Medzhitov R. Toll-like receptors: balancing host resistance with immune tolerance. Curr Opin Immunol 2003; 15:677–682.

    Article  PubMed  CAS  Google Scholar 

  59. Balachandran S, Porosnicu M, Barber GN. Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis. J Virol 2001;75:3474–3479.

    Article  PubMed  CAS  Google Scholar 

  60. Balachandran S, Roberts PC, Kipperman T, et al. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J Virol 2000;74:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  61. Dovhey SE, Ghosh NS, Wright KL. Loss of interferon-gamma inducibility of TAPI and LMP2 in a renal cell carcinoma cell line. Cancer Res 2000;60:5789–5796.

    PubMed  CAS  Google Scholar 

  62. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991–998.

    Article  PubMed  CAS  Google Scholar 

  63. Kovarik J, Boudny V, Kocak I, Lauerova L, Fait V, Vagundova M. Malignant melanoma associates with deficient IFN-induced STAT 1 phosphorylation. Int J Mol Med 2003;12:335–340.

    PubMed  CAS  Google Scholar 

  64. Linge C, Gewert S, Rossmann S, Bishop JA, Crowe JS. Interferon system defects in human malignant melanoma. Cancer Res 1995;55:4099–4104.

    PubMed  CAS  Google Scholar 

  65. Matin SF, Rackley RR, Sadhukhan PC, et al. Impaired alpha-interferon signaling in transitional cell carcinoma: lack of p48 expression in 5637 cells. Cancer Res 2001;61:2261–2266.

    PubMed  CAS  Google Scholar 

  66. Persing DH, Prendergast FG. Infection, immunity, and cancer. Arch Pathol Lab Med 1999; 123: 1015–1022.

    PubMed  CAS  Google Scholar 

  67. Sun WH, Pabon C, Alsayed Y, et al. Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood 1998;91:570–576.

    PubMed  CAS  Google Scholar 

  68. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis 2004;24:77–88.

    Article  PubMed  CAS  Google Scholar 

  69. Wong LH, Krauer KG, Hatzinisiriou I, et al. Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3gamma. J Biol Chem 1997;272:28,779–28,785.

    CAS  Google Scholar 

  70. Fernandez M, Porosnicu M, Markovic D, Barber GN. Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 2002;76:895–904.

    Article  PubMed  CAS  Google Scholar 

  71. Obuchi M, Fernandez M, Barber GN. Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 2003;77:8843–8856.

    Article  PubMed  CAS  Google Scholar 

  72. Bonnet MC, Tartaglia J, Verdier F, et al. Recombinant viruses as a tool for therapeutic vaccination against human cancers. Immunol Lett 2000;74:11–25.

    Article  PubMed  CAS  Google Scholar 

  73. Dornburg R. The history and principles of retroviral vectors. Front Biosci 2003;8:d818–d835.

    Article  PubMed  CAS  Google Scholar 

  74. Yee JK, Friedmann T, Burns JC. Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994;43 Pt A: 99–112.

    PubMed  CAS  Google Scholar 

  75. Golini F, Semler BL, Dorner AJ, Wimmer E. Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature 1980;287:600–603.

    Article  PubMed  CAS  Google Scholar 

  76. Rose JK. Positive strands to the rescue again: a segmented negative-strand RNA virus derived from cloned cDNAs. Proc Natl Acad Sci U S A 1996;93:14,998–15,000.

    CAS  Google Scholar 

  77. Luytjes W, Krystal M, Enami M, Pavin JD, Palese P. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 1989;59:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  78. Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 2004;283:121–143.

    PubMed  CAS  Google Scholar 

  79. Schnell MJ, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA. Embo J 1994;13:4195–4203.

    PubMed  CAS  Google Scholar 

  80. Bridgen A, Elliott RM. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 1996;93:15,400–15,404.

    Article  CAS  Google Scholar 

  81. Lawson ND, Stillman EA, Whitt MA, Rose JK. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 1995;92:4477–4481.

    Article  PubMed  CAS  Google Scholar 

  82. Peeters BP, de Leeuw OS, Koch G, Gielkens AL. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 1999;73:5001–5009.

    PubMed  CAS  Google Scholar 

  83. Nagai Y. Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. Rev Med Virol 1999;9:83–99.

    Article  PubMed  CAS  Google Scholar 

  84. Radecke F, Spielhofer P, Schneider H, et al. Rescue of measles viruses from cloned DNA. EMBO J 1995; 14:5773–5784.

    PubMed  CAS  Google Scholar 

  85. Whelan SP, Ball LA, Barr JN, Wertz GT. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 1995;92:8388–8392.

    Article  PubMed  CAS  Google Scholar 

  86. Schnell MJ, Buonocore L, Whitt MA, Rose JK. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 1996;70: 2318–2323.

    PubMed  CAS  Google Scholar 

  87. Quinones-Kochs MI, Schnell MJ, Buonocore L, Rose JK. Mechanisms of loss of foreign gene expression in recombinant vesicular stomatitis viruses. Virology 2001;287:427–435.

    Article  PubMed  CAS  Google Scholar 

  88. Roberts A, Buonocore L, Price R, Forman J, Rose JK. Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 1999;73:3723–3732.

    PubMed  CAS  Google Scholar 

  89. Roberts A, Kretzschmar E, Perkins AS, et al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 1998;72:4704–4711.

    PubMed  CAS  Google Scholar 

  90. Roberts A, Reuter JD, Wilson JH, Baldwin S, Rose JK. Complete protection from papillomavirus challenge after a single vaccination with a vesicular stomatitis virus vector expressing high levels of L1 protein. J Virol 2004;78:3196–3199.

    Article  PubMed  CAS  Google Scholar 

  91. Rose NF, Marx PA, Luckay A, et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 2001;106:539–549.

    Article  PubMed  CAS  Google Scholar 

  92. Buonocore L, Blight KJ, Rice CM, Rose JK. Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 2002;76:6865–6872.

    Article  PubMed  CAS  Google Scholar 

  93. Rose NF, Roberts A, Buonocore L, Rose JK. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 2000;74:10,903–10,910.

    Article  CAS  Google Scholar 

  94. Kahn JS, Roberts A, Weibel A, Buonocore L, Rose JK. Replication-competent or attenuated, non-propagating vesicular stomatitis viruses expressing respiratory syncytial virus (RSV) antigens protect mice against RSV challenge. J Virol 2001;75:11,079–11,087.

    Article  CAS  Google Scholar 

  95. Ramsburg E, Rose NF, Marx PA, et al. Highly effective control of an AIDS virus challenge in macaques by using vesicular stomatitis virus and modified vaccinia virus Ankara vaccine vectors in a single-boost protocol. J Virol 2004;78:3930–3940.

    Article  PubMed  CAS  Google Scholar 

  96. Schnell MJ, Johnson JE, Buonocore L, Rose JK. Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 1997;90:849–857.

    Article  PubMed  CAS  Google Scholar 

  97. Duntsch CD, Zhou Q, Jayakar HR, et al. Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice-glioma coculture model. J Neurosurg 2004;100:1049–1059.

    Article  PubMed  CAS  Google Scholar 

  98. Kretzschmar E, Buonocore L, Schnell MJ, Rose JK. High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J Virol 1997;71: 5982–5989.

    PubMed  CAS  Google Scholar 

  99. Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA, Watkins SC. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells. Virology 2003;316:337–347.

    Article  PubMed  CAS  Google Scholar 

  100. Huang Z, Elankumaran S, Panda A, Samal SK. Recombinant Newcastle disease virus as a vaccine vector. Poult Sci 2003;82:899–906.

    PubMed  CAS  Google Scholar 

  101. Desforges M, Charron J, Berard S, et al. Different host-cell shutoff strategies related to the matrix protein lead to persistence of vesicular stomatitis virus mutants on fibroblast cells. Virus Res 2001;76:87–102.

    Article  PubMed  CAS  Google Scholar 

  102. Stojdl DE Lichty BD, tenOever BR, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003;4:263–275.

    Article  PubMed  CAS  Google Scholar 

  103. Porosnicu M, Mian A, Barber GN. The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 2003;63:8366–8376.

    PubMed  CAS  Google Scholar 

  104. Connor JH, Naczki C, Koumenis C, Lyles DS. Replication and cytopathic effect of oncolytic vesicular stomatitis virus in hypoxic tumor cells in vitro and in vivo. J Virol 2004;78:8960–8970.

    Article  PubMed  CAS  Google Scholar 

  105. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre A, Woo SL. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res 2003;63:3605–3611.

    PubMed  CAS  Google Scholar 

  106. Ebert O, Shinozaki K, Kournioti C, Park MS, Garcia-Sastre A, Woo SL. Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 2004;64: 3265–3270.

    Article  PubMed  CAS  Google Scholar 

  107. Hirasawa K, Nishikawa SG, Norman KL, et al. Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 2003;63:348–353.

    PubMed  CAS  Google Scholar 

  108. Huang TG, Ebert O, Shinozaki K, Garcia-Sastre A, Woo SL. Oncolysis of hepatic metastasis of colorectal cancer by recombinant vesicular stomatitis virus in immune-competent mice. Mol Ther 2003;8:434–440.

    Article  PubMed  CAS  Google Scholar 

  109. Forrest JC, Dermody TS. Reovirus receptors and pathogenesis. J Virol 2003;77:9109–9115.

    Article  PubMed  CAS  Google Scholar 

  110. Tyler KL, Clarke P, DeBiasi RL, Kominsky D, Poggioli GJ. Reoviruses and the host cell. Trends Microbiol 2001;9:560–564.

    Article  PubMed  CAS  Google Scholar 

  111. Norman KL, Coffey MC, Hirasawa K, et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther 2002;13:641–652.

    Article  PubMed  CAS  Google Scholar 

  112. Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A 2004;101: 11,099–11,104.

    Article  CAS  Google Scholar 

  113. Strong JE, Coffey MC, Tang S, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998;17:3351–3362.

    Article  PubMed  CAS  Google Scholar 

  114. Alain T, Hirasawa K, Pon KJ, et al. Reovirus therapy of lymphoid malignancies. Blood 2002; 100: 4146–4153.

    Article  PubMed  CAS  Google Scholar 

  115. Etoh T, Himeno Y, Matsumoto T, et al. Oncolytic viral therapy for human pancreatic cancer cells by reovirus. Clin Cancer Res 2003;9:1218–1223.

    PubMed  CAS  Google Scholar 

  116. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW. Oncolytic reovirus against ovarian and colon cancer. Cancer Res 2002;62:1696–1701.

    PubMed  CAS  Google Scholar 

  117. Wilcox ME, Yang W, Senger S, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001;93:903–912.

    Article  PubMed  CAS  Google Scholar 

  118. Yang WQ, Senger S, Muzik H, et al. Reovirus prolongs survival and reduces the frequency of spinal and leptomeningeal metastases from medulloblastoma. Cancer Res 2003;63:3162–3172.

    PubMed  CAS  Google Scholar 

  119. Thirukkumaran CM, Luider JM, Stewart DA, et al. Reovirus oncolysis as a novel purging strategy for autologous stem cell transplantation. Blood 2003; 102:377–387.

    Article  PubMed  CAS  Google Scholar 

  120. Curran J, Kolakofsky D. Replication of paramyxoviruses. Adv Virus Res 1999;54:403–422.

    PubMed  CAS  Google Scholar 

  121. Peng KW, TenEyck CJ, Galanis E, Kalli KT, Hartmann LC, Russell SJ. IntraperitO’Neal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002;62:4656–4662.

    PubMed  CAS  Google Scholar 

  122. Peng KW, Frenzke M, Myers R, et al. Biodistribution of oncolytic measles virus after intraperitO’Neal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther 2003;14:1565–1577.

    Article  PubMed  CAS  Google Scholar 

  123. Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63:2462–2469.

    PubMed  CAS  Google Scholar 

  124. Plumb J, Duprex WP, Cameron CH, Richter-Landsberg C, Talbot P, McQuaid S. Infection of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Neurovirol 2002;8:24–34.

    Article  PubMed  Google Scholar 

  125. Bucheit AD, Kumar S, Grote DM, et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003;7:62–72.

    Article  PubMed  CAS  Google Scholar 

  126. Peng KW, Donovan KA, Schneider U, Cattaneo R, Lust JA, Russell SJ. Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 2003; 101:2557–2562.

    Article  PubMed  CAS  Google Scholar 

  127. Grote D, Russell SJ, Cornu TI, et al. Live attenuated measles virus induces regression of human lym-phoma xenografts in immunodeficient mice. Blood 2001;97: 3746–3754.

    Article  PubMed  CAS  Google Scholar 

  128. Peng KW, Facteau S, Wegman T, DO’Kane, Russell SJ. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002;8:527–531.

    Article  PubMed  CAS  Google Scholar 

  129. Nakaya T, Cros J, Park MS, et al. Recombinant Newcastle disease virus as a vaccine vector. J Virol 2001;75:11,868–11,873.

    Article  CAS  Google Scholar 

  130. Lorence RM, Pecora AL, Major PP, et al. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr Opin Mol Ther 2003;5:618–624.

    PubMed  CAS  Google Scholar 

  131. Pecora AL, Rizvi N, Cohen GI, et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 2002;20:2251–2266.

    Article  PubMed  CAS  Google Scholar 

  132. Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 2001;172:27–36.

    Article  PubMed  CAS  Google Scholar 

  133. Csatary LK, Gosztonyi G, Szeberenyi J, et al. MTH-68/H oncolytic viral treatment in human highgrade gliomas. J Neurooncol 2004;67:83–93.

    Article  PubMed  CAS  Google Scholar 

  134. Sinkovics JG, Horvath JC. Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 2000;16:1–15.

    Article  PubMed  CAS  Google Scholar 

  135. Muster T, Rajtarova J, Sachet M, et al. Interferon resistance promotes oncolysis by influenza virus NSl-deletion mutants. Int J Cancer 2004;110:15–21.

    Article  PubMed  CAS  Google Scholar 

  136. Bergmann M, Romirer I, Sachet M, et al. A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 2001;61:8188–8193.

    PubMed  CAS  Google Scholar 

  137. Livingston PO, Albino AP, Chung TJ, et al. Serological response of melanoma patients to vaccines prepared from VSV lysates of autologous and allogeneic cultured melanoma cells. Cancer 1985;55: 713–720.

    Article  PubMed  CAS  Google Scholar 

  138. Shah AC, Benos D, Gillespie GY, Markert JM. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 2003;65:203–226.

    Article  PubMed  Google Scholar 

  139. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 2000;97:6803–6808.

    Article  PubMed  CAS  Google Scholar 

  140. Ansardi DC, Porter DC, Jackson CA, Gillespie GY, Morrow CD. RNA replicons derived from poliovirus are directly oncolytic for human tumor cells of diverse origins. Cancer Res 2001;61:8470–8479.

    PubMed  CAS  Google Scholar 

  141. Smyth M, Symonds A, Brazinova S, Martin J. Bovine enterovirus as an oncolytic virus: foetal calf serum facilitates its infection of human cells. Int J Mol Med 2002;10:49–53.

    PubMed  CAS  Google Scholar 

  142. Yamanaka R. Alphavirus vectors for cancer gene therapy (review). Int J Oncol 2004;24:919–923.

    PubMed  CAS  Google Scholar 

  143. Ying H, Zaks TZ, Wang RF, et al. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999;5:823–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Barber, G.N. (2007). Vesicular Stomatitis Virus and RNA Viruses as Gene Therapy Vectors. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics