Skip to main content

Alphavirus Vectors for Gene Therapy Applications

  • Chapter
Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Alphavirus vectors can infect a broad range of mammalian cells both in cell cultures and in vivo. The presence of the RNA replicon generates extreme RNA levels in infected cells, which is the basis for the very high levels of heterologous gene expression. Application of replication-deficient vectors leads to short-term expression, which makes these vectors highly attractive for cancer gene therapy. Alphaviruses can be used as vaccine vectors for both prophylactic and therapeutic applications. In this context, the P185 tumor antigen and human papilloma virus gene E7, when administered in mice, resulted in protection against tumor challenge and tumor regression in animals with pre-existing tumors. Alphavirus vectors carrying therapeutic or toxic genes used for intratumoral injections have demonstrated efficient tumor regression. For systemic delivery, expression targeting has been obtained by the introduction of targeting sequences in the envelope structure of the virus. Alternatively, alphavirus particles have been encapsulated in liposome, which can target tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strauss JH, Strauss EG. The alphaviruses: gene expression, replication and evolution. Microbiol Rev 1994;58:491–562.

    PubMed  CAS  Google Scholar 

  2. Peränen J, Takkinen K, Kalkkinen N, Kääriäinen L. Semliki Forest virus-specific non-structural protein nsP3 is a phosphoprotein. J Gen Virol 1998;69:2165–2178.

    Google Scholar 

  3. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992;66:4992–5001.

    PubMed  CAS  Google Scholar 

  4. Liljeström P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Bio/Technology 1991;9:1356–1361.

    Article  PubMed  Google Scholar 

  5. Smerdou C, Liljeström P. Two-helper RNA system for production of recombinant Semliki Forest virus particles. J Virol 1999;73:1092–1098.

    PubMed  CAS  Google Scholar 

  6. Vaha-Koskela MJ, Tuittila MT, Nygardas PT, et al. A novel neurotropic expression vector based on the avirulent A7(74) strain of Semliki Forest virus. J Neurovirol 2003;9:1–15.

    Article  PubMed  Google Scholar 

  7. Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljestrom P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 1998;16:562–565.

    Article  PubMed  CAS  Google Scholar 

  8. DiCiommo DP, Bremner R. Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 1998;273:18,060–18,066.

    Article  CAS  Google Scholar 

  9. Xiong C, Levis R, Shen P, et al. Sindbis virus: an efficient broad host range vector for gene expression in animal cells. Science 1989;243:1188–1191.

    Article  PubMed  CAS  Google Scholar 

  10. Davis NL, Brown KW, Johnston RE. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology 1989;171:189–204.

    Article  PubMed  CAS  Google Scholar 

  11. Lundstrom K, Schweitzer C, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU. Semliki Forest virus vectors: efficient vehicles for in vitro and in vivo gene delivery. FEBS Lett 2001;504: 99–103.

    Article  PubMed  CAS  Google Scholar 

  12. Schlesinger S. Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 2001;1:177–191.

    Article  PubMed  CAS  Google Scholar 

  13. Olkkonen VM, Liljestrom P, Garoff H, Simons K, Dotti CG. Expression of heterologous proteins in cultured rat hippocampal neurons using the Semliki Forest virus vector. J Neurosci Res 1993;35:445–451.

    Article  PubMed  CAS  Google Scholar 

  14. Ehrengruber MU, Lundstrom K, Schweizer C, et al. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci U S A 1999;96:7041–7046.

    Article  PubMed  CAS  Google Scholar 

  15. Lundstrom K, Richards JG, Pink JR, Jenck F Efficient in vivo expression of a reporter gene in rat brain after injection of replication-deficient Semliki Forest virus. Gene Ther Mol Biol 1999;3:15–23.

    Google Scholar 

  16. Gwag BJ, Kim EY, Ryu BR, et al. A neuron-specific gene transfer by a recombinant defective Sindbis virus. Brain Res Mol Brain Res 1998;63:53–61.

    Article  PubMed  CAS  Google Scholar 

  17. Lundstrom K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim Biophys Acta 2003; 1610:90–96.

    Article  PubMed  CAS  Google Scholar 

  18. Lundstrom K. Alphavirus vectors for vaccine production and gene therapy. Expert Rev Vaccines 2003;2:447–459.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou X, Berglund P, Zhao H, Liljestrom P, Jondal M. Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus. Proc Natl Acad Sci U S A 1995;92: 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  20. Lundstrom K. Alphavirus vectors for vaccine production and gene therapy. Exp Rev Vaccines 2003;2:447–459.

    CAS  Google Scholar 

  21. Ying H, Zaks TZ, Wang RF, et al. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999;5:823–827.

    Article  PubMed  CAS  Google Scholar 

  22. Colmenero P, Liljestrom P, Jondal M. Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the PIA gene. Gene Ther 1999;6:1728–1733.

    Article  PubMed  CAS  Google Scholar 

  23. Velders MP, McElhiney S, Cassetti MC, et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 2001;61:7861–7867.

    PubMed  CAS  Google Scholar 

  24. Daemen T, Regts J, Holtrop M, Wilschut J. Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Ther 2002;9:85–94.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng WF, Hung CF, Hsu KF, et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther 2002; 13:553–568.

    Article  PubMed  CAS  Google Scholar 

  26. Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg 2001;94:474–481.

    Article  PubMed  CAS  Google Scholar 

  27. Yamanaka R, Zullo SA, Ramsey J, et al. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virusmediated interleukin-12 J Neurosurg 2002;97:611–618.

    PubMed  CAS  Google Scholar 

  28. Yamanaka R, Tsuchiya N, Yajima N, et al. Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin-18 combined with the systemic administration of interleukin-12. J Neurosurg 2003;99:746–753.

    PubMed  CAS  Google Scholar 

  29. Hardy PA, Mazzini MJ, Schweitzer C, Lundstrom K, Glode LM. Recombinant Semliki forest virus infects and kills human prostate cancer cell lines and prostatic duct epithelial cells ex vivo. Int J Mol Med 2000;5:241–245.

    PubMed  CAS  Google Scholar 

  30. Loimas S, Toppinen MR, Visakorpi T, Janne J, Wahlfors J. Human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase-mediated suicide gene therapy. Cancer Gene Ther 2001;8: 137–144.

    Article  PubMed  CAS  Google Scholar 

  31. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992;256:1550–1552.

    Article  PubMed  CAS  Google Scholar 

  32. Asselin-Paturel C, Lassau N, Guinebretiere JM, et al. Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther 1999;6:606–615.

    Article  PubMed  CAS  Google Scholar 

  33. Colmenero P, Chen M, Castanos-Velez E, Liljestrom P, Jondal M. Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 2002;98:554–560.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy AM, Morris-Downes MM, Sheahan BJ, Atkins GJ. Inhibition of human lung carcinoma cell growth by apoptosis induction using Semliki Forest virus recombinant particles. Gene Ther 2000; 7:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  35. Murphy AM, Sheahan BJ, Atkins GJ. Induction of apoptosis in BCL-2-expressing rat prostate cancer cells using the Semliki Forest virus vector. Int J Cancer 2001;94:572–578.

    Article  PubMed  CAS  Google Scholar 

  36. Klimp AH, van der Vaart E, Lansink PO, et al. Activation of peritO’Neal cells upon in vivo transfection with a recombinant alphavirus expressing GM-CSF. Gene Ther 2001;8:300–307.

    Article  PubMed  CAS  Google Scholar 

  37. Ohno K, Sawai K, Iijima Y, Levin B, Meruelo D. Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 1997;15:763–767.

    Article  PubMed  CAS  Google Scholar 

  38. Gardner JP, Frolov I, Perri S, et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 2000;74: 11,849–11,857.

    Article  CAS  Google Scholar 

  39. Lehtolainen P, Wirth T, Taskinen AK, et al. Targeting of biotinylated compounds to its target tissue using a low-density lipoprotein receptor-avidin fusion protein. Gene Ther 2003; 10:2090–2097.

    Article  PubMed  CAS  Google Scholar 

  40. Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2003;2:471–486.

    PubMed  CAS  Google Scholar 

  41. Ren H, Boulikas T, Lundstrom K, Soling A, Warnke PC, Rainov NG. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene⊕ phase I/II clinical protocol. Neurooncol 2003;64:147–154.

    CAS  Google Scholar 

  42. Tseng JC, Levin B, Hurtado A, et al. Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol 2004;22:70–77.

    Article  PubMed  CAS  Google Scholar 

  43. Li KJ, Garoff H. Production of infectious recombinant Moloney murine leukemia virus particles in BHK cells using Semliki Forest virus-derived RNA expression vectors. Proc Natl Acad Sci USA 1996;93:11,658–11,663.

    CAS  Google Scholar 

  44. Li KJ, Garoff H. Packaging of intron-containing genes into retrovirus vectors by alphavirus vectors. Proc Natl Acad Sci U S A 1998;9:3650–3654.

    Article  Google Scholar 

  45. Wahlfors JJ, Xanthopoulos KG, Morgan RA. Semliki Forest virus-mediated production of retroviral vector RNA in retroviral packaging cells. Hum Gene Ther 1997;8:2031–2041.

    Article  PubMed  CAS  Google Scholar 

  46. Wahlfors JJ, Morgan RA. Production of minigene-containing retroviral vectors using an alphavirus/retrovirus hybrid vector system. Hum Gene Ther 1999;10:1197–1206.

    Article  PubMed  CAS  Google Scholar 

  47. Lebedeva I, Fujita K, Nihrane A, Silver J. Infectious particles derived from Semliki Forest virus vectors encoding murine leukemia virus envelopes. J Virol 1997;71:7061–7067.

    PubMed  CAS  Google Scholar 

  48. Mathiot CC, Grimaud G, Garry P, et al. An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 1990;42:386–393.

    PubMed  CAS  Google Scholar 

  49. Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (NY) 1993;11:916–920.

    Article  CAS  Google Scholar 

  50. Smerdou C, Liljestrom P. Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 1999;73:1092–1098.

    PubMed  CAS  Google Scholar 

  51. Polo JM, Belli BA, Driver DA, et al. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci U S A 1999;96:4598–4603.

    Article  PubMed  CAS  Google Scholar 

  52. Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 1998;95:12,989–12,994.

    Article  CAS  Google Scholar 

  53. Boorsma M, Nieba L, Koller D, Bachmann MF, Bailey JE, Renner WA. A temperature-regulated replicon-based DNA expression system. Nat Biotechnol 2000;18:429–432.

    Article  PubMed  CAS  Google Scholar 

  54. Lundstrom K, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU. Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem Cell Biol 2001;115:83–91.

    PubMed  CAS  Google Scholar 

  55. Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU. Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther 2003;7:202–209.

    Article  PubMed  CAS  Google Scholar 

  56. Perri S, Driver DA, Gardner JP, et al. Replicon vectors derived from Sindbis virus and Semliki forest virus that establish persistent replication in host cells. J Virol 2000;74:9802–9807.

    Article  PubMed  CAS  Google Scholar 

  57. Ying H, Zeng G, Black KL. Innovative cancer vaccine strategies based on the identification of tumour-associated antigens. BioDrugs 2001;15:819–831.

    Article  PubMed  CAS  Google Scholar 

  58. Leitner WW, Hwang LN, de Veer MJ, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003;9:33–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lundstrom, K. (2007). Alphavirus Vectors for Gene Therapy Applications. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics