Skip to main content

Herpes Simplex Virus as a Therapy for Cancer

  • Chapter
Book cover Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1536 Accesses

Abstract

Inspired by reports that viral infection might be capable of promoting tumor regression published in the early 20th century, investigators have struggled to identify a suitable virus, which though unable to cause disease, retained the capability to replicate in cancer cells. In principal, the productive growth of the virus would kill or lyse malignant cells and the newly minted viral progeny would spread the infection, resulting ultimately in the destruction of the tumor by a process termed viral oncolysis. Fueled by revolutionary advances in molecular biology that enabled a new understanding of viral virulence at the genetic level, nonpathogenic strains of human viruses have been engineered in the laboratory and their oncolytic ability evaluated in animal models of human cancer. This chapter chronicles the milestones in engineering oncolytic strains of herpes simplex virus type 1, highlighting different stages of development beginning with the pioneering use of recombinant viruses produced in the laboratory, accompanied by a discussion of key design innovations which upon incorporation into HSV-1 oncolytic strains, substantially improved both their safety and efficacy, and summarizes recent experiences in phase I clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinkovics J, Horvath J. New developments in the virus therapy of cancer: a historical review. Intervirology 1993; 36:193–214.

    PubMed  CAS  Google Scholar 

  2. Roizman B, Knipe D. Herpes simplex viruses and their replication. In: Knipe DM and Howley PM, eds. Fields Virology, 4th ed., vol. 2., Philadelphia: Lippincott, Williams & Wilkins, 2001: 2399–2460.

    Google Scholar 

  3. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991;252:854–856.

    Article  PubMed  CAS  Google Scholar 

  4. Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond). 1978;81:267–277.

    CAS  Google Scholar 

  5. Jamieson AT, Gentry GA, Subak-Sharpe JH. Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J Gen Virol 1974;24:465–480.

    PubMed  CAS  Google Scholar 

  6. Field HJ, Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother 1980;17:209–216.

    PubMed  CAS  Google Scholar 

  7. Tenser RB, Miller RL, Rapp F. Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus. Science 1979;205:915–917.

    Article  PubMed  CAS  Google Scholar 

  8. Coen DM, Kosz-Vnenchak M, Jacobson JG, et al. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 1989;86:4736–4740.

    Article  PubMed  CAS  Google Scholar 

  9. Markert JM, Malick A, Coen DM, Martuza RL. Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 1993;32:597–603.

    Article  PubMed  CAS  Google Scholar 

  10. Mineta T, Rabkin SD, Martuza RL. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994;54:3963–3966.

    PubMed  CAS  Google Scholar 

  11. Chou J, Kern ER, Whitley RJ, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma (1) 34.5, a gene nonessential for growth in culture. Science 1990;250:1262–1266.

    Article  PubMed  CAS  Google Scholar 

  12. Maclean AR, Ul-Fareed M, Robertson L, Harland J, Brown SM. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 1991;72:631–639.

    Article  PubMed  CAS  Google Scholar 

  13. Bolovan CA, Sawtell NM, Thompson RL. ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 1994;68:48–55.

    PubMed  CAS  Google Scholar 

  14. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1:938–943.

    Article  PubMed  CAS  Google Scholar 

  15. Hunter WD, Martuza RL, Feigenbaum F, et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999;73:6319–6326.

    PubMed  CAS  Google Scholar 

  16. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000;7:867–874.

    Article  PubMed  CAS  Google Scholar 

  17. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000;7:859–866.

    Article  PubMed  CAS  Google Scholar 

  18. Sundaresan P, Hunter WD, Martuza RL, Rabkin SD. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 2000;74:3832–3841.

    Article  PubMed  CAS  Google Scholar 

  19. Chambers R, Gillespie GY, Soroceanu L, et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci U S A 1995;92:1411–1415.

    Article  PubMed  CAS  Google Scholar 

  20. Kesari S, Randazzo BP, Valyi-Nagy T, et al. Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest 1995;73:636–648.

    PubMed  CAS  Google Scholar 

  21. Andreansky SS, He B, Gillespie GY, et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci U S A 1996;93:11,313–11,318.

    Article  CAS  Google Scholar 

  22. Andreansky S, Soroceanu L, Flotte ER, et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 1997;57:1502–1509.

    PubMed  CAS  Google Scholar 

  23. Randazzo BP, Kesari S, Gesser RM, et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995;211:94–101.

    Article  PubMed  CAS  Google Scholar 

  24. Kesari S, Lasner TM, Balsara KR, et al. A neuroattenuated ICP34.5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system. J Gen Virol 1998;79:525–536.

    PubMed  CAS  Google Scholar 

  25. Lasner TM, Tal-Singer R, Kesari S, Lee VM, Trojanowski JQ, Fraser NW. Toxicity and neuronal infection of a HSV-1 ICP34.5 mutant in nude mice. J Neurovirol 1998;4:100–105.

    Article  PubMed  CAS  Google Scholar 

  26. Markovitz NS, Baunoch D, Roizman B. The range and distribution of murine central nervous system cells infected with the gamma(1)34.5-mutant of herpes simplex virus 1. J Virol 1997;71:5560–5569.

    PubMed  CAS  Google Scholar 

  27. Kramm CM, Chase M, Herrlinger U, et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997;8:2057–2068.

    PubMed  CAS  Google Scholar 

  28. Pyles, RB, Warnick RE, Chalk CL, Szanti BE, Parysek LM. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 1997;8:533–544.

    PubMed  CAS  Google Scholar 

  29. Chou J, Roizman B. The gamma (1) 34.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci U S A 1992;89:3266–3270.

    Article  PubMed  CAS  Google Scholar 

  30. Chou J, Chen JJ, Gross M, Roizman B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma (1) 34.5-mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A 1995;92:10,516–10,520.

    CAS  Google Scholar 

  31. Kaufman RJ. Double-stranded RNA-activated protein kinase PKR. In: Translational Control. Sonenberg N, Hershey, JWB, Mathews, MB, eds. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 2000:503–528.

    Google Scholar 

  32. Schneider RJ, Mohr I. Translation initiation and viral tricks. Trends Biochem Sci 2003;3: 130–136.

    Article  CAS  Google Scholar 

  33. Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotypes of wild — type and mutant herpes simplex viruses in vivo. J Exp Med 1999;189: 663–672.

    Article  PubMed  CAS  Google Scholar 

  34. Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U S A 2000;97:6097–6101.

    Article  PubMed  CAS  Google Scholar 

  35. Mohr I. Neutralizing innate host defenses to control translation in HSV-1 infected cells. Int. Review of Immunol 2004;23:199–220.

    Article  CAS  Google Scholar 

  36. He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase lalpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 1997;94:843–848.

    Article  PubMed  CAS  Google Scholar 

  37. Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2 alpha. J Cell Biol 2001; 153:1011–1022.

    Article  PubMed  CAS  Google Scholar 

  38. Cheng G, Brett ME, He B. Val193 and Phe195 of the γ134.5 protein of herpes simplex virus 1 are required for viral resistance to interferon α/β. Virology 2001;290:115–120.

    Article  PubMed  CAS  Google Scholar 

  39. Cerveny M, Hessefort S, Yang K, Cheng G, Gross M, He B. Amino acid substitutions in the effector domain of the γ134.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon-α. Virology 2003;307:290–300.

    Article  PubMed  CAS  Google Scholar 

  40. Mohr I, Gluzman Y. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 1996;15:4759–4766.

    PubMed  CAS  Google Scholar 

  41. Mulvey M, Poppers J, Ladd A, Mohr I. A herpesvirus ribosome-associated, RNA-binding protein confers a growth advantage upon mutants deficient in a GADD34-related function. J Virol 1999;73:3375–3385.

    PubMed  CAS  Google Scholar 

  42. Poppers J, Mulvey M, Khoo D, Mohr I. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 2000;74:11,215–11,221.

    Article  CAS  Google Scholar 

  43. Khoo D, Perez C, Mohr I. Characterization of RNA determinants recognized by the arginine-and proline-rich region of Us11, a herpes simplex virus type 1 encoded double-stranded RNA binding protein that prevents PKR activation. J Virol 2002;76:11,971–11,981.

    Article  CAS  Google Scholar 

  44. Mulvey M, Poppers J, Sternberg D, Mohr I. Regulation of eIF2a phosphorylation by different functions that act during discrete phases in the HSV-1 lifecycle. J Virol 2003;77:10,917–10,928.

    Article  CAS  Google Scholar 

  45. Mulvey M, Camarena V, Mohr I. Full resistance of HSV-1 infected primary human cells to interferon a require both the Usll and γ134.5 gene products. J Virol 2004;78:10,193–10,196.

    Article  CAS  Google Scholar 

  46. Advani SJ, Sibley GS, Song PY, et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther. 1998;5:160–165.

    Article  PubMed  CAS  Google Scholar 

  47. Bradley JD, Kataoka Y, Advani S, et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res 1999;5:1517–1522.

    PubMed  CAS  Google Scholar 

  48. Stanziale SF, Petrowsky H, Joe JK, et al. Ionizing radiation potentiates the antitumor efficacy of oncolytic herpes simplex virus G207 by upregulating ribonucleotide reductase. Surgery 2002; 132:353–359.

    Article  PubMed  Google Scholar 

  49. Chahlavi A, Todo T, Martuza RL, Rabkin SD. Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1999;1:162–169.

    Article  PubMed  CAS  Google Scholar 

  50. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999;5:881–887.

    Article  PubMed  CAS  Google Scholar 

  51. Jorgensen TJ, Katz S, Wittmack EK, et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia 2001;3:451–456.

    Article  PubMed  CAS  Google Scholar 

  52. Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci U S A 2003;101:1714–1719.

    Article  CAS  Google Scholar 

  53. Chase M, Chung RY, Chiocca EA. An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotech 1998;16:444–448.

    Article  CAS  Google Scholar 

  54. Nakamura H et. al. Multimodality therapy with a replication — conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001;61:5447–5452.

    PubMed  CAS  Google Scholar 

  55. Mohr I, Sternberg D, Ward S, Leib D, Mulvey M, Gluzman Y A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 2001;75:5189–5196.

    Article  PubMed  CAS  Google Scholar 

  56. Taneja S, Macgregor J, Markus S, Ha S, Mohr I. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci U S A 2001;98:8804–8808.

    Article  PubMed  CAS  Google Scholar 

  57. Todo T, Martuza Rl, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 2001;98:6396–6401.

    Article  PubMed  CAS  Google Scholar 

  58. Liu BL, Robinson M, Han Z-Q, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10:292–303.

    Article  PubMed  CAS  Google Scholar 

  59. Chung RY, Saeki Y, Chiocca EA. B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 1999;73:7556–7564.

    PubMed  CAS  Google Scholar 

  60. Nakamura H, Kasuya H, Mullen JT, et al. Regulation of herpes simplex virus gamma (1) 34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Invest 2002;109: 871–882.

    Article  PubMed  CAS  Google Scholar 

  61. Meignier B, Longnecker R, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 1988;158:602–614.

    PubMed  CAS  Google Scholar 

  62. Meignier B, Martin B, Whitley RJ, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis 1990;162:313–321.

    PubMed  CAS  Google Scholar 

  63. Advani SJ, Chung SM, Yan SY, et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res 1999;59:2055–2058.

    PubMed  CAS  Google Scholar 

  64. Todo T, Martuza RL, Dallman MJ, Rabkin SD. In situ expression of soluble B7-1 in the context of oncolytic herpes virus induces potent antitumor immunity. Cancer Res 2001;61: 153–161.

    PubMed  CAS  Google Scholar 

  65. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci U S A 2000;97:2208–2213.

    Article  PubMed  CAS  Google Scholar 

  66. Wong RJ, Patel SG, Kim S-H, et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001; 12:253–265.

    Article  PubMed  CAS  Google Scholar 

  67. Walker JR, McGeagh KG, Sundaresan P, Jorgensen TJ, Rabkin SD, Martuza RL. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 1999; 10:2237–2243.

    Article  PubMed  CAS  Google Scholar 

  68. Yu YA, Shabahang S, Timiryasova TM, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virusencoding light-emitting proteins. Nat Biotech 2004;22:313–320.

    Article  CAS  Google Scholar 

  69. Keda K, Wakimoto H, Ichikawa T, et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000; 74:4765–4775.

    Article  Google Scholar 

  70. Wong RJ, Joe JK, Kim SH, Shah JP, Horsburgh B, Fong Y Oncolytic herpesvirus effectively treats murine squamous cell carcinoma and spreads by natural lymphatics to treat sites of lymphatic metastases. Hum Gene Ther 2002; 13:1213–1223.

    Article  PubMed  CAS  Google Scholar 

  71. Herrlinger U, Kramm CM, Aboody-Guterman KS, et al. Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish gene transfer to experimental braintumors by a HSV-1 vector. Gene Ther 1998;5:809–819.

    Article  PubMed  CAS  Google Scholar 

  72. Chahlavi A, Rabkin S, Todo T, Sundaresan P, Martuza R Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Ther 1999;6:1751–1758.

    Article  PubMed  CAS  Google Scholar 

  73. Delman KA, Bennett JJ, Zager JS, et al. Effects of preexisting immunity on the response to herpes simplex-based oncolytic viral therapy. Hum Gene Ther 2000; 11:2465–2472.

    Article  PubMed  CAS  Google Scholar 

  74. Toda M, Rabkin SD, Kojima H, Martuza RL. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 1999;10:385–393.

    Article  PubMed  CAS  Google Scholar 

  75. Todo T, Rabkin SD, Sundaresan P, et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10:2741–2755.

    Article  PubMed  CAS  Google Scholar 

  76. Wong RJ, Chan M-K, Yu Z, et al. Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing Interleukin 12. Clin Cancer Res 2004; 10:251–259.

    Article  PubMed  CAS  Google Scholar 

  77. Shah AC, Benos D, Gillespie GY, Markert JM. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neuro-Oncol 2003;65:203–226.

    Article  Google Scholar 

  78. Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV 1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 2002;9:398–406.

    Article  PubMed  CAS  Google Scholar 

  79. Mackie RM, Stewart B, Brown SM. Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 2001;357:525–526.

    Article  PubMed  CAS  Google Scholar 

  80. Wang Y, Hallden G, Hill R, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotech 2003;21:1328–1335.

    Article  CAS  Google Scholar 

  81. Cassady KA, Gross M, Gillespie GY, Roizman B. Second-site mutation outside of the Us10-12 domain of delta gamma (1) 34.5 herpes simplex virus 1 recombinant blocks the shutoff of protein synthesis induced by avtivated protein kinase R and partially restores neurovirulence. J. Virol 2002; 76:942–990.

    Article  PubMed  CAS  Google Scholar 

  82. York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994;77:525–535.

    Article  PubMed  CAS  Google Scholar 

  83. Hill A, Jugovic P, York I, et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995;375:411–415.

    Article  PubMed  CAS  Google Scholar 

  84. Goldsmith K, Chen W, Johnson DC, Hendricks RL. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 1998;187:341–348.

    Article  PubMed  CAS  Google Scholar 

  85. Ahn K, Meyer TH, Uebel S, et al. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 1996;15:3247–3255.

    PubMed  CAS  Google Scholar 

  86. Spear PG, Eisenberg RJ, Cohen GH. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 2000;275:1–8.

    Article  PubMed  CAS  Google Scholar 

  87. Zhou G, Ye G-J, Debinski W, Roizman B. Engineered herpes simplex virus 1 is dependent on IL13Rα2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci U SA 2002;99:15,124–15,129.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mohr, I.J. (2007). Herpes Simplex Virus as a Therapy for Cancer. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics