Skip to main content

Cytokine Gene Therapy for Genitourinary Cancer

  • Chapter
  • 1528 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This chapter will discuss the potential for delivery of cytokine molecules using neo-adjuvant/adjuvant gene therapy strategies to achieve antitumor efficacy. It focuses on two approaches for delivery of cytokine genes to achieve effective therapy; in situ delivery using adenoviral vectors also termed “active vaccination,” and cell based approaches using specific immune cells modified with cytokine genes. These approaches have potential advantages for prostate cancer therapy and possibly other genitourinary malignancies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin 2004;54:8–29.

    PubMed  Google Scholar 

  2. Thompson I, Leach RJ, Pollock BH, Naylor SL. Prostate cancer and prostate-specific antigen: the more we know, the less we understand. J Natl Cancer Inst 2003;95:1027–1028.

    PubMed  Google Scholar 

  3. Wei JT, Dunn RL, Sandier HM, et al. Comprehensive comparison of health-related quality of life after contemporary therapies for localized prostate cancer. J Clin Oncol 2002;20:557–566.

    PubMed  Google Scholar 

  4. Rioux-Leclercq NC, Chan DY, Epstein JI. Prediction of outcome after radical prostatectomy in men with organ-confined Gleason score 8 to 10 adenocarcinoma. Urology 2002;60:666–669.

    PubMed  Google Scholar 

  5. Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol 2000;163:1632–1642.

    PubMed  CAS  Google Scholar 

  6. D’Amico AV, Moul JW, Carroll PR, Sun L, Lubeck D, Chen MH. Surrogate end point for prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J Natl Cancer Inst 2003;95:1376–1383.

    PubMed  Google Scholar 

  7. Miles BJ, Shalev M, Aguilar-Cordova E, et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum Gene Ther 2001;12:1955–1967.

    PubMed  CAS  Google Scholar 

  8. Trachtenberg J. A review of hormonal treatment in advanced prostate cancer. Can J Urol 1997;4:61–64.

    PubMed  Google Scholar 

  9. Mundy GR. Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2:584–593.

    PubMed  CAS  Google Scholar 

  10. Teh BS, Aguilar-Cordova E, Vlachaki MT, et al. Combining radiotherapy with gene therapy (from the bench to the bedside): a novel treatment strategy for prostate cancer. Oncologist 2002;7:458–466.

    PubMed  CAS  Google Scholar 

  11. Pagliaro LC, Keyhani A, Williams D, et al. Repeated Intravesical Instillations of an Adenoviral Vector in Patients With Locally Advanced Bladder Cancer: A Phase I Study of p53 Gene Therapy. J Clin Oncol 2003;21:2247–2253.

    PubMed  CAS  Google Scholar 

  12. Gdor Y, Timme TL, Miles BJ, Kadmon D, Thompson TC. Gene therapy for prostate cancer. Expert Rev Anticancer Ther 2002;2:309–321.

    PubMed  CAS  Google Scholar 

  13. Nakanishi H, Mazda O, Satoh E, et al. Nonviral genetic transfer of Fas ligand induced significant growth suppression and apoptotic tumor cell death in prostate cancer in vivo. Gene Ther 2003;10:434–442.

    PubMed  CAS  Google Scholar 

  14. Seki M, Iwakawa J, Cheng H, Cheng PW. p53 and PTEN/MMAC1/TEP1 gene therapy of human prostate PC-3 carcinoma xenograft, using transferrin-facilitated lipofection gene delivery strategy. Hum Gene Ther 2002;13:761–773.

    PubMed  CAS  Google Scholar 

  15. Jin RJ, Kwak C, Lee SG, et al. The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts. Cancer Gene Ther 2000;7:1537–1542.

    PubMed  CAS  Google Scholar 

  16. Miyatake S, Martuza RL, Rabkin SD. Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther 1997;4:222–228.

    PubMed  CAS  Google Scholar 

  17. Pyles RB, Warnick RE, Chalk CL, Szanti BE, Parysek LM. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 1997;8:533–544.

    PubMed  CAS  Google Scholar 

  18. Walker JR, McGeagh KG, Sundaresan P, Jorgensen TJ, Rabkin SD, Martuza RL. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 1999; 10:2237–2243.

    PubMed  CAS  Google Scholar 

  19. Kawakita M, Rao GS, Ritchey JK, et al. Effect of canarypox virus (ALVAC)-mediated cytokine expression on murine prostate tumor growth. J Natl Cancer Inst 1997;89:428–436.

    PubMed  CAS  Google Scholar 

  20. Thompson TC. In situ gene therapy for prostate cancer. Oncol Res 1999;11:1–8.

    PubMed  CAS  Google Scholar 

  21. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989;56:917–930.

    PubMed  CAS  Google Scholar 

  22. Thompson TC, Park SH, Timme TL, et al. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene 1995; 10:869–879.

    PubMed  CAS  Google Scholar 

  23. Thompson TC, Timme TL, Park SH, Yang G, Ren C. Mouse prostate reconstitution model system: A series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate 2000; 43:248–254.

    PubMed  CAS  Google Scholar 

  24. Thompson TC, Timme TL, Sehgal I. Oncogenes, growth factors, and hormones in prostate cancer. In: Hormones and growth factors in development and neoplasia, Dickson RB, Salomon DS, eds. New York Wiley-Liss, Inc. 1998;327–359.

    Google Scholar 

  25. Stapleton AM, Timme TL, Gousse AE, et al. Primary human prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin Cancer Res 1997;3:1389–1397.

    PubMed  CAS  Google Scholar 

  26. Cordon-Cardo C. Molecular alterations in bladder cancer. Cancer Surv 1998;32:115–131.

    PubMed  CAS  Google Scholar 

  27. Timme TL, Satoh T, Tahir SA, et al. Therapeutic targets for metastatic prostate cancer. Curr Drug Targets 2003;4:251–261.

    PubMed  CAS  Google Scholar 

  28. Lee HM, Timme TL, Thompson TC. Resistance to lysis by cytotoxic T cells: a dominant effect in metastatic mouse prostate cancer cells. Cancer Res 2000;60:1927–1933.

    PubMed  CAS  Google Scholar 

  29. Eastham JA, Chen SH, Sehgal I, et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum Gene Ther 1996;7:515–523.

    PubMed  CAS  Google Scholar 

  30. Hall SJ, Mutchnik SE, Chen SH, Woo SL, Thompson TC. Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. Int J Cancer 1997;70: 183–187.

    PubMed  CAS  Google Scholar 

  31. Hall SJ, Mutchnik SE, Yang G, et al. Cooperative therapeutic effects of androgen ablation and adenovirusmediated herpes simplex virus thymidine kinase gene and ganciclovir therapy in experimental prostate cancer. Cancer Gene Ther 1999;6:54–63.

    PubMed  CAS  Google Scholar 

  32. Timme TL, Hall SJ, Barrios R, Woo SL, Aguilar-Cordova E, Thompson TC. Local inflammatory response and vector spread after direct intraprostatic injection of a recombinant adenovirus containing the herpes simplex virus thymidine kinase gene and ganciclovir therapy in mice. Cancer Gene Ther 1998;5:74–82.

    PubMed  CAS  Google Scholar 

  33. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10:1239–1249.

    PubMed  CAS  Google Scholar 

  34. Shalev M, Kadmon D, Teh BS, et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 2000; 163:1747–1750.

    PubMed  CAS  Google Scholar 

  35. Ayala G, Wheeler TM, Shalev M, et al. Cytopathic effect of in situ gene therapy in prostate cancer. Hum Pathol 2000;31:866–870.

    PubMed  CAS  Google Scholar 

  36. Satoh T, Teh BS, Timme TL, et al. Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 2004;59:562–571.

    PubMed  CAS  Google Scholar 

  37. Teh BS, Aguilar-Cordova E, Kernen K, et al. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer—a preliminary report. Int J Radiat Oncol Biol Phys 2001;51:605–613.

    PubMed  CAS  Google Scholar 

  38. Teh BS, Ayala G, Aguilar L, et al. Phase I-II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 2004;58:1520–1529.

    PubMed  CAS  Google Scholar 

  39. Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998;16:495–521.

    PubMed  CAS  Google Scholar 

  40. Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A 1990;87:6808–6812.

    PubMed  CAS  Google Scholar 

  41. Gately MK. Interleukin-12: a recently discovered cytokine with potential for enhancing cell-mediated immune responses to tumors. Cancer Invest 1993; 11:500–506.

    PubMed  CAS  Google Scholar 

  42. Scott P. IL-12: initiation cytokine for cell-mediated immunity. Science 1993;260:496–497.

    PubMed  CAS  Google Scholar 

  43. Wu CY, Demeure C, Kiniwa M, Gately M, Delespesse G. IL-12 induces the production of IFNgamma by neonatal human CD4 T cells. J Immunol 1993;151:1938–1949.

    PubMed  CAS  Google Scholar 

  44. Nasu Y, Bangma CH, Hull GW, et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther 1999;6:338–349.

    PubMed  CAS  Google Scholar 

  45. Cavallo F, Di Carlo E, Butera M, et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res 1999;59:414–421.

    PubMed  CAS  Google Scholar 

  46. Boggio K, Di Carlo E, Rovero S, et al. Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 2000;60:359–364.

    PubMed  CAS  Google Scholar 

  47. Smyth MJ, Taniguchi M, Street SE. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 2000;165:2665–2670.

    PubMed  CAS  Google Scholar 

  48. Robertson MJ, Cameron C, Atkins MB, et al. Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res 1999;5:9–16.

    PubMed  CAS  Google Scholar 

  49. Kang WK, Park C, Yoon HL, et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001;12:671–684.

    PubMed  CAS  Google Scholar 

  50. Atkins MB, Robertson MJ, Gordon M, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997;3:409–417.

    PubMed  CAS  Google Scholar 

  51. Leonard JP, Sherman ML, Fisher GL, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferongamma production. Blood 1997;90:2541–2548.

    PubMed  CAS  Google Scholar 

  52. Gollob JA, Veenstra KG, Mier JW, Atkins MB. Agranulocytosis and hemolytic anemia in patients with renal cell cancer treated with interleukin-12. J Immunother 2001;24:91–98.

    PubMed  CAS  Google Scholar 

  53. Motzer RJ, Rakhit A, Schwartz LH, et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res 1998;4:1183–1191.

    PubMed  CAS  Google Scholar 

  54. Car BD, Eng VM, Schnyder B, et al. Role of interferon-gamma in interleukin 12-induced pathology in mice. Am J Pathol 1995; 147:1693–1707.

    PubMed  CAS  Google Scholar 

  55. Siders WM, Wright PW, Hixon JA, et al. T cell-and NK cell-independent inhibition of hepatic metastases by systemic administration of an IL-12-expressing recombinant adenovirus. J Immunol 1998;160:5465–5474.

    PubMed  CAS  Google Scholar 

  56. Hirschowitz EA, Crystal RG. Adenovirus-mediated expression of interleukin-12 induces natural killer cell activity and complements adenovirus-directed gp75 treatment of melanoma lung metastases. Am J Respir Cell Mol Biol 1999;20:935–941.

    PubMed  CAS  Google Scholar 

  57. Mazzolini G, Qian C, Xie X, et al. Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12. Cancer Gene Ther 1999;6: 514–522.

    PubMed  CAS  Google Scholar 

  58. Rakhmilevich AL, Janssen K, Hao Z, Sondel PM, Yang NS. Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T-cell-independent mechanism. Cancer Gene Ther 2000;7:826–838.

    PubMed  CAS  Google Scholar 

  59. Worth LL, Jia SF, Zhou Z, Chen L, Kleinerman ES. Intranasal therapy with an adenoviral vector containing the murine interleukin-12 gene eradicates osteosarcoma lung metastases. Clin Cancer Res 2000;6:3713–3718.

    PubMed  CAS  Google Scholar 

  60. Brunda MJ, Luistro L, Warrier RR, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993;178:1223–1230.

    PubMed  CAS  Google Scholar 

  61. Gately MK, Warrier RR, Honosage S, et al. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int. Immunol 1994;6:157–167.

    PubMed  CAS  Google Scholar 

  62. Banks RE, Patel PM, Selby PJ. Interleukin 12: a new clinical player in cytokine therapy. Br J Cancer 1995;71:655–659.

    PubMed  CAS  Google Scholar 

  63. Sangro B, Mazzolini G, Ruiz J, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004;22:1389–1397.

    PubMed  CAS  Google Scholar 

  64. Nasu Y, Bangma CH, Hull GW, et al. Combination gene therapy with adenoviral vector-mediated HSV-tk+GCV and IL-12 in an orthotopic mouse model for prostate cancer. Prostate Cancer Prostatic Dis 2001;4:44–55.

    PubMed  CAS  Google Scholar 

  65. Ren C, Li L, Goltsov AA, et al. mRTVP-1, a Novel p53 Target Gene with Proapoptotic Activities. Mol Cell Biol 2002;22:3345–3357.

    PubMed  CAS  Google Scholar 

  66. Murphy EV, Zhang Y, Zhu W, Biggs J. The human glioma pathogenesis-related protein is structurally related to plant pathogenesis-related proteins and its gene is expressed specifically in brain tumors. Gene 1995;159:131–135.

    PubMed  CAS  Google Scholar 

  67. Rich T, Chen P, Furman F, Huynh N, Israel MA. RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin. Gene 1996;180:125–130.

    PubMed  CAS  Google Scholar 

  68. Gingras MC, Margolin JF. Differential expression of multiple unexpected genes during U937 cell and macrophage differentiation detected by suppressive subtractive hybridization. Exp Hematol 2000;28:65–76.

    PubMed  CAS  Google Scholar 

  69. Szyperski T, Fernandez C, Mumenthaler C, Wuthrich K. Structure comparison of human glioma pathogenesis-related protein GliPR and the plant pathogenesis-related protein P14a indicates a functional link between the human immune system and a plant defense system. Proc Natl Acad Sci U S A 1998;95:2262–2266.

    PubMed  CAS  Google Scholar 

  70. Ren C, Li L, Yang G, et al. RTVP-1: a tumor suppressor protein inactivated by methylation in prostate cancer. Cancer Res 2004;64:969–976.

    PubMed  CAS  Google Scholar 

  71. Satoh T, Timme TL, Saika T, et al. Adenoviral vector-mediated mRTVP-1 gene therapy for prostate cancer. Hum Gene Ther 2003;14:91–101.

    PubMed  CAS  Google Scholar 

  72. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001;12:883–892.

    PubMed  CAS  Google Scholar 

  73. Pantuck AJ, van Ophoven A, Gitlitz BJ, et al. Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 2004;27:240–253.

    PubMed  CAS  Google Scholar 

  74. Suzuki K, Nakazato H, Matsui H, et al. NK cell-mediated anti-tumor immune response to human prostate cancer cell, PC-3: immunogene therapy using a highly secretable form of interleukin-15 gene transfer. J Leukoc Biol 2001;69:531–537.

    PubMed  CAS  Google Scholar 

  75. Oshikawa K, Shi F, Rakhmilevich AL, Sondel PM, Mahvi DM, Yang NS. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1beta converting enzyme cDNA. Proc Natl Acad Sci U S A 1999;96:13,351–13,356.

    CAS  Google Scholar 

  76. Yamanaka K, Hara I, Nagai H, et al. Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model. Cancer Immunol Immunother 1999;48:297–302.

    PubMed  CAS  Google Scholar 

  77. Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res 2003;63:8138–8144.

    PubMed  CAS  Google Scholar 

  78. Hillman GG, Xu M, Wang Y, et al. Radiation improves intratumoral gene therapy for induction of cancer vaccine in murine prostate carcinoma. Hum Gene Ther 2003; 14:763–775.

    PubMed  CAS  Google Scholar 

  79. Dong Z, Greene G, Pettaway C, et al. Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-beta. Cancer Res 1999;59:872–879.

    PubMed  CAS  Google Scholar 

  80. Cao G, Su J, Lu W, et al. Adenovirus-mediated interferon-beta gene therapy suppresses growth and metastasis of human prostate cancer in nude mice. Cancer Gene Ther 2001;8:497–505.

    PubMed  CAS  Google Scholar 

  81. Izawa JI, Sweeney P, Perrotte P, et al. Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis. Clin Cancer Res 2002;8:1258–1270.

    PubMed  CAS  Google Scholar 

  82. Nakanishi H, Mizutani Y, Kawauchi A, et al. Significant antitumoral activity of cationic multilamellar liposomes containing human IFN-beta gene against human renal cell carcinoma. Clin Cancer Res 2003;9:1129–1135.

    PubMed  CAS  Google Scholar 

  83. Parkinson RJ, Mian S, Bishop MC, et al. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy. Prostate 2003;56:65–73.

    PubMed  CAS  Google Scholar 

  84. Griffith TS, Kawakita M, Tian J, et al. Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses. J Natl Cancer Inst 2001;93:998–1007.

    PubMed  CAS  Google Scholar 

  85. Wu Q, Mahendran R, Esuvaranathan K. Nonviral cytokine gene therapy on an orthotopic bladder cancer model. Clin Cancer Res 2003;9:4522–4528.

    PubMed  CAS  Google Scholar 

  86. Sanda MG, Ayyagari SR, Jaffee EM, et al. Demonstration of a rational strategy for human prostate cancer gene therapy. J Urol 1994; 151:622–628.

    PubMed  CAS  Google Scholar 

  87. Rini BI, Small EJ. The potential for prostate cancer immunotherapy. Crit Rev Oncol Hematol 2003;46 Suppl:S117–S125.

    PubMed  Google Scholar 

  88. Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol 2004; 16:89–98.

    PubMed  CAS  Google Scholar 

  89. Correale P, Walmsley K, Zaremba S, Zhu M, Schlom J, Tsang KY. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. J Immunol 1998;161:3186–3194.

    PubMed  CAS  Google Scholar 

  90. Sanda MG, Smith DC, Charles LG, et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 1999;53:260–266.

    PubMed  CAS  Google Scholar 

  91. Meidenbauer N, Harris DT, Spitler LE, Whiteside TL. Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. Prostate 2000;43:88–100.

    PubMed  CAS  Google Scholar 

  92. Terasawa H, Tsang KY, Gulley J, Arlen P, Schlom J. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res 2002; 8:41–53.

    PubMed  CAS  Google Scholar 

  93. Zhang S, Zhang HS, Reuter VE, Slovin SF, Scher HI, Livingston PO. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin Cancer Res 1998;4:295–302.

    PubMed  CAS  Google Scholar 

  94. Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999; 1:123–127.

    PubMed  CAS  Google Scholar 

  95. Chen ME, Lin SH, Chung LW, Sikes RA. Isolation and characterization of PAGE-1 and GAGE-7. New genes expressed in the LNCaP prostate cancer progression model that share homology with melanoma-associated antigens. J Biol Chem 1998;273:17,618–17,625.

    CAS  Google Scholar 

  96. Fong L, Ruegg CL, Brockstedt D, Engleman EG, Laus R. Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J Immunol 1997;159:3113–3117.

    PubMed  CAS  Google Scholar 

  97. McNeel DG, Nguyen LD, Disis ML. Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res 2001;61:5161–5167.

    PubMed  CAS  Google Scholar 

  98. Dhanasekaran SM, Barrette TR, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001;412:822–826.

    PubMed  CAS  Google Scholar 

  99. Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev 2002;188:147–154.

    PubMed  CAS  Google Scholar 

  100. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999;59: 5160–5168.

    PubMed  CAS  Google Scholar 

  101. Tani K, Nakazaki Y, Hase H, et al. Progress reports on immune gene therapy for stage IV renal cell cancer using lethally irradiated granulocyte-macrophage colony-stimulating factor-transduced autologous renal cancer cells. Cancer Chemother Pharmacol 2000;46 Suppl: S73–S76.

    PubMed  CAS  Google Scholar 

  102. Kawai K, Tani K, Yamashita N, et al. Advanced renal cell carcinoma treated with granulocytemacrophage colony-stimulating factor gene therapy: a clinical course of the first Japanese experience. Int J Urol 2002;9:462–466.

    PubMed  Google Scholar 

  103. Hull GW, McCurdy MA, Nasu Y, et al. Prostate cancer gene therapy: comparison of adenovirusmediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res 2000;6:4101–4109.

    PubMed  CAS  Google Scholar 

  104. Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC. Reduced infiltration of tumorassociated macrophages in human prostate cancer: association with cancer progression. Cancer Res 2000;60:5857–5861.

    PubMed  CAS  Google Scholar 

  105. Xu J, Zheng SL, Komiya A, et al. Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am J Hum Genet 2003;72:208–212.

    PubMed  CAS  Google Scholar 

  106. Xu J, Zheng SL, Komiya A, et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002;32:321–325.

    PubMed  CAS  Google Scholar 

  107. Wang L, McDonnell SK, Cunningham JM, et al. No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet 2003;35:128–129.

    PubMed  CAS  Google Scholar 

  108. Satoh T, Saika T, Ebara S, et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 2003;63:7853–7860.

    PubMed  CAS  Google Scholar 

  109. Murphy GP, Tjoa BA, Simmons SJ, et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 1999;38:73–78.

    PubMed  CAS  Google Scholar 

  110. Murphy GP, Tjoa BA, Simmons SJ, et al. Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 1999;39:54–59.

    PubMed  CAS  Google Scholar 

  111. Burch PA, Breen JK, Buckner JC, et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 2000;6:2175–2182.

    PubMed  CAS  Google Scholar 

  112. Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000;18:3894–3903.

    PubMed  CAS  Google Scholar 

  113. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol 2001; 166:2953–2960.

    PubMed  CAS  Google Scholar 

  114. Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 2001; 167:7150–7156.

    PubMed  CAS  Google Scholar 

  115. Correale P, Micheli L, Vecchio MT, et al. A parathyroid-hormone-related-protein (PTH-rP)-specific cytotoxic T cell response induced by in vitro stimulation of tumour-infiltrating lymphocytes derived from prostate cancer metastases, with epitope peptide-loaded autologous dendritic cells and low-dose IL-2. Br J Cancer 2001;85:1722–1730.

    PubMed  CAS  Google Scholar 

  116. Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109: 409–417.

    PubMed  CAS  Google Scholar 

  117. Ridgway D. The first 1000 dendritic cell vaccinees. Cancer Invest 2003;21:873–886.

    PubMed  Google Scholar 

  118. Figdor CG, De Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475–480.

    PubMed  CAS  Google Scholar 

  119. Saika T, Satoh T, Kusaka N, et al. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther 2004;11:317–324.

    PubMed  CAS  Google Scholar 

  120. De Vries IJ, Krooshoop DJ, Scharenborg NM, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003;63:12–17.

    PubMed  Google Scholar 

  121. Curiel TJ, Curiel DT. Tumor immunotherapy: inching toward the finish line. J Clin Invest 2002; 109:311–312.

    PubMed  CAS  Google Scholar 

  122. Sawczuk IS. Autolymphocyte therapy in the treatment of metastatic renal cell carcinoma. Urol Clin North Am 1993;20:297–301.

    PubMed  CAS  Google Scholar 

  123. Graham S, Babayan RK, Lamm DL, et al. The use of ex vivo-activated memory T cells (autolymphocyte therapy) in the treatment of metastatic renal cell carcinoma: final results from a randomized, controlled, multisite study. Semin Urol 1993;11:27–34.

    PubMed  CAS  Google Scholar 

  124. Ross S, Liu V, Abulafia R, Hogan C, Osband M. Adoptive immunotherapy of hormone-refractory, stage D2 prostate cancer using ex vivo activated autologous T cells (autolymphocyte therapy): results from a pilot study. Biotechnol Ther 1993;4:197–211.

    PubMed  CAS  Google Scholar 

  125. Kawakami Y, Haas GP, Lotze MT. Expansion of tumor-infiltrating lymphocytes from human tumors using the T-cell growth factors interleukin-2 and interleukin-4. J Immunother 1993;14:336–347.

    CAS  Google Scholar 

  126. Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 2003;3:431–437.

    PubMed  CAS  Google Scholar 

  127. Pinthus JH, Waks T, Kaufman-Francis K, et al. Immuno-Gene Therapy of Established Prostate Tumors Using Chimeric Receptor-redirected Human Lymphocytes. Cancer Res 2003;63:2470–2476.

    PubMed  CAS  Google Scholar 

  128. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850–854.

    PubMed  CAS  Google Scholar 

  129. Saika T, Kusaka N, Satoh T, et al. Adoptive transfer of splenocytes from mice treated in situ with AdIL-12 results in suppression of tumor growth and metastasis and increased survival in a model for residual tumor after neo-adjuvant in situ gene therapy for prostate cancer. Mol. Ther 2002;6:S111.

    Google Scholar 

  130. Schmidt-Wolf IG, Finke S, Trojaneck B, et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 1999;81:1009–1016.

    PubMed  CAS  Google Scholar 

  131. Wang H, Yang G, Satoh T, et al. Antimetastatic effects of IL-12 gene-modified bone marrow cells in a mouse model of metastatic prostate cancer. Mol. Ther 2003;7:S119.

    Google Scholar 

  132. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999;59:4035–4041.

    PubMed  CAS  Google Scholar 

  133. Marshall E. Gene therapy. Second child in French trial is found to have leukemia. Science 2003;299:320.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Timme, T.L. et al. (2007). Cytokine Gene Therapy for Genitourinary Cancer. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics