Skip to main content

Tumor Targeting-Retargeted Adenovirus

  • Chapter
Gene Therapy for Cancer

Abstract

Adenovirus (Ad) has been applied for gene therapy in various applications. The current Ad vector system has two critical problems; low transduction of the target cancer cells and high transduction of nontarget normal organs. To address these issues, we have been working on “retargeting” of Ad vectors via transductional or transcriptional targeting. Transductional targeting has been achieved with application of various bridging moieties, genetical modification of vector capsid, or chemically coating viral particles. On the other hand, transcriptional targeting has been performed by employing natural or artificial transcriptional control elements with desired selectivity profile. In the field of cancer gene therapy, such retargeting has achieved augmented infectivity in the cancers that have been difficult to transduce with conventional Ad vector, as well as cancer specific transgene expression for avoiding toxicity. Success in cancer gene therapy requires vector design reflecting the pathological/physiological profile of the target disease, such as conditionally replicative adenovirus with combined retargeting mechanisms incorporated. In addition, we must continue to seek new targeting modalities because different tumor context always imposes unique challenges with respect to disease targeting. While reliable preclinical/clinical studies are necessary to establish a legitimate role of adenoviral retargeting in the field of cancer gene therapy, it is obvious that better vector targeting should leads to more potent and safe adenovirus based cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hallenbeck PL, Chang YN, Hay C, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999;10:1721–1733.

    Article  PubMed  CAS  Google Scholar 

  2. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for sub-group C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 1997;94:3352–3356.

    Article  PubMed  CAS  Google Scholar 

  3. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  4. Huard J, Lochmuller H, Acsadi G, Jani A, Massie B, Karpati G. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995;2:107–115.

    PubMed  CAS  Google Scholar 

  5. Reynolds P, Dmitriev I, Curiel D. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther 1999;6:1336–1339.

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto M, Alemany R, Adachi Y, Grizzle WE, Curiel DT. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol Ther 2001;3:385–394.

    Article  PubMed  CAS  Google Scholar 

  7. Smith T, Idamakanti N, Kylefjord H, et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002;5:770–779.

    Article  PubMed  CAS  Google Scholar 

  8. Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004;78:5368–5381.

    Article  PubMed  CAS  Google Scholar 

  9. Akiyama M, Thorne S, Kirn D, et al. Ablating CAR and integrin binding in adenovirus vectors reduces nontarget organ transduction and permits sustained bloodstream persistence following intraperitO’Neal administration. Mol Ther 2004;9:218–230.

    Article  PubMed  CAS  Google Scholar 

  10. Eisensmith RC, Woo SL. Viral vector-mediated gene therapy for hemophilia B. Thromb Haemost 1997;78:24–30.

    PubMed  CAS  Google Scholar 

  11. VandenDriessche T, Collen D, Chuah MK. Viral vector-mediated gene therapy for hemophilia. Curr Gene Ther 2001;1:301–315.

    Article  PubMed  CAS  Google Scholar 

  12. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res 1997;9:313–325.

    PubMed  CAS  Google Scholar 

  13. van der Eb MM, Cramer SJ, Vergouwe Y, et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther 1998;5:451–458.

    Article  PubMed  CAS  Google Scholar 

  14. Bilbao R, Gerolami R, Bralet MR et al. Transduction efficacy, antitumoral effect, and toxicity of adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir therapy of hepatocellular carcinoma: the woodchuck animal model. Cancer Gene Ther 2000;7:657–662.

    Article  PubMed  CAS  Google Scholar 

  15. Wesseling JG, Bosma PJ, Krasnykh V, et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 2001;8:969–976.

    Article  PubMed  CAS  Google Scholar 

  16. Schrump DS, Chen GA, Consuli U, Jin X, Roth JA. Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16INK4. Cancer Gene Ther 1996;3:357–364.

    PubMed  CAS  Google Scholar 

  17. Buskens CJ, Marsman WA, Wesseling JG, et al. A genetically retargeted adenoviral vector enhances viral transduction in esophageal carcinoma cell lines and primary cultured esophageal resection specimens. Ann Surg 2003;238:815–824; discussion 825-826.

    Article  PubMed  Google Scholar 

  18. Yamamoto M, Davydova J, Wang M, et al. Infectivity enhanced, cyclooxygenase-2 promoterbased conditionally replicative adenovirus for pancreatic cancer. Gastroenterology 2003;125: 1203–1218.

    Article  PubMed  CAS  Google Scholar 

  19. Davydova J, Le L, Gavrikova T, Wang M, Krasnykh V, Yamamoto M. Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma. Cancer Res 2004;64:4319–4327.

    Article  PubMed  CAS  Google Scholar 

  20. Ono HA, Davydova JG, Adachi Y, et al. Promoter-controlled infectivity enhanced conditionally replicative adenoviral vectors for the treatment of gastric cancer. J Gastroenterol 2005;40:31–42.

    Article  PubMed  CAS  Google Scholar 

  21. Tekant Y, Davydova J, Ramirez PJ, Curiel DT, Vickers SM, Yamamoto M. Oncolytic adenoviral therapy in gallbladder carcinoma. Surgery 2005; 137:527–535.

    Article  PubMed  Google Scholar 

  22. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997;16:2294–2306.

    Article  PubMed  CAS  Google Scholar 

  23. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 2001;98:15,191–15,196.

    CAS  Google Scholar 

  24. Philipson L, Pettersson RF. The coxsackie-adenovirus receptor—a new receptor in the immunoglobulin family involved in cell adhesion. Curr Top Microbiol Immunol 2004;273:87–111.

    PubMed  CAS  Google Scholar 

  25. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319.

    Article  PubMed  CAS  Google Scholar 

  26. Shenk T. Adenoviridae: The Viruses and Their Replication. In: Virology, vol. 2, Fields B, Knipe D, Howley P, eds. Philadelphia: Lipponcott-Raven, 1996;2111–2148.

    Google Scholar 

  27. Curiel DT. Strategies to adapt adenoviral vectors for targeted delivery. Ann N Y Acad Sci 1999;886:158–171.

    Article  PubMed  CAS  Google Scholar 

  28. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14:1574–1578.

    Article  PubMed  CAS  Google Scholar 

  29. Wickham TJ, Segal DM, Roelvink PW, et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996;70:6831–6838.

    PubMed  CAS  Google Scholar 

  30. Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J, Curiel DT. Use of a novel cross-linking method to modify adenovirus tropism. Gene Ther 1997;4:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  31. MacDonald LR, Patt BE, Iwanczyk JS, Tsui BMW, Wang Y, Frey E, Wessel DE, Acton PD, Kung HF. Pinhole SPECT of mice using the LumaGem Gamma Camera. 2001.

    Google Scholar 

  32. Reynolds PN, Nicklin SA, Kaliberova L, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001;19:838–842.

    Article  PubMed  CAS  Google Scholar 

  33. Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE. The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther 1997;4:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  34. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000;74:6875–6884.

    Article  PubMed  CAS  Google Scholar 

  35. Wickham TJ, Tzeng E, Shears LL, 2nd, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997;71:8221–8229.

    PubMed  CAS  Google Scholar 

  36. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998;72:1844–1852.

    PubMed  CAS  Google Scholar 

  37. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptorindependent cell entry mechanism. J Virol 1998;72:9706–9713.

    PubMed  CAS  Google Scholar 

  38. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V. Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002;76:8621–8631.

    Article  PubMed  CAS  Google Scholar 

  39. Korokhov N, Mikheeva G, Krendelshchikov A, et al. Targeting of adenovirus via genetic modification of the viral capsid combined with a protein bridge. J Virol 2003;77:12,931–12,340.

    Article  CAS  Google Scholar 

  40. Volpers C, Thirion C, Biermann V, et al. Antibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin g-binding domain in the capsid. J Virol 2003;77: 2093–2104.

    Article  PubMed  CAS  Google Scholar 

  41. Henning P, Magnusson MK, Gunneriusson E, et al. Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein A. Hum Gene Ther 2002; 13:1427–1439.

    Article  PubMed  CAS  Google Scholar 

  42. O’Riordan CR, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 1999;10:1349–1358.

    Article  PubMed  CAS  Google Scholar 

  43. Chillon M, Lee JH, Fasbender A, Welsh MJ. Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 1998;5:995–1002.

    Article  PubMed  CAS  Google Scholar 

  44. Ogawara K-i, Tots MG, Kok RJ, et al. A Novel Strategy to Modify Adenovirus Tropism and Enhance Transgene Delivery to Activated Vascular Endothelial Cells In Vitro and In Vivo. Hum Gene Ther 2004; 15:433–443.

    Article  PubMed  CAS  Google Scholar 

  45. Lewin B. Genes VII. Oxford, 2000.

    Google Scholar 

  46. Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001;38:177–192.

    Article  PubMed  CAS  Google Scholar 

  47. Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. Adv Pharmacol 1997;40:137–206.

    Article  PubMed  CAS  Google Scholar 

  48. Curiel DT. The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 2000;6:3395–3399.

    PubMed  CAS  Google Scholar 

  49. Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000;18:723–727.

    Article  PubMed  CAS  Google Scholar 

  50. Takahashi M, Sato T, Sagawa T, et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002;5:627–634.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang L, Adams JY, Billick E, et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002;5:223–232.

    Article  PubMed  CAS  Google Scholar 

  52. Furuhata S, Ide H, Miura Y, Yoshida T, Aoki K. Development of a prostate-specific promoter for gene therapy against androgen-independent prostate cancer. Mol Ther 2003;7:366–374.

    Article  PubMed  CAS  Google Scholar 

  53. Nakagawa S, Massie B, Hawley RG. Tetracycline-regulatable adenovirus vectors: pharmacologic properties and clinical potential. Eur J Pharm Sci 2001;13:53–60.

    Article  PubMed  CAS  Google Scholar 

  54. Vereecque R, Saudemont A, Wickham TJ, et al. Gamma-irradiation enhances transgene expression in leukemic cells. Gene Ther 2003;10:227–233.

    Article  PubMed  CAS  Google Scholar 

  55. Edholm D, Molin M, Bajak E, Akusjarvi G. Adenovirus vector designed for expression of toxic proteins. J Virol 2001;75:9579–9584.

    Article  PubMed  CAS  Google Scholar 

  56. Kagawa S, Pearson SA, Ji L, et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther 2000;7:75–79.

    Article  PubMed  CAS  Google Scholar 

  57. Burcin MM, Schiedner G, Kochanek S, Tsai SY, O’Malley BW. Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci U S A 1999;96:355–360.

    Article  PubMed  CAS  Google Scholar 

  58. Tomanin R, Bett AJ, Picci L, Scarpa M, Graham FL. Development and characterization of a binary gene expression system based on bacteriophage T7 components in adenovirus vectors. Gene 1997;193:129–140.

    Article  PubMed  CAS  Google Scholar 

  59. Sato Y, Tanaka K, Lee G, et al. Enhanced and specific gene expression via tissue-specific production of Cre recombinase using adenovirus vector. Biochem Biophys Res Commun 1998;244:455–462.

    Article  PubMed  CAS  Google Scholar 

  60. Koch PE, Guo ZS, Kagawa S, Gu J, Roth JA, Fang B. Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene regulatory system. Mol Ther 2001;3: 278–283.

    Article  PubMed  CAS  Google Scholar 

  61. Adachi Y, Raynolds PN, Yamamoto M, et al. Midkine Promoter-Based Adenovirus Vector Gene Delivery for Pediatrie Solid Tumors. Cancer Res 2000;60:4305–4310.

    PubMed  CAS  Google Scholar 

  62. Yamamoto M. Conditionally replicative adenovirus (CRAd) for gastrointestinal cancers. Expert Opin Biol Ther 2004;4:1241–1250.

    Article  PubMed  CAS  Google Scholar 

  63. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998;58:5738–5748.

    PubMed  CAS  Google Scholar 

  64. Gu DL, Gonzalez AM, Printz MA, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999;59:2608–2614.

    PubMed  CAS  Google Scholar 

  65. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996;70:6839–6846.

    PubMed  CAS  Google Scholar 

  66. Kirn D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 2000;19:6660–6669.

    Article  PubMed  CAS  Google Scholar 

  67. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001;7:120–126.

    PubMed  CAS  Google Scholar 

  68. Godbey WT, Atala A. Directed apoptosis in Cox-2-overexpressing cancer cells through expressiontargeted gene delivery. Gene Ther 2003;10:1519–1527.

    Article  PubMed  CAS  Google Scholar 

  69. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581–8589.

    Article  PubMed  CAS  Google Scholar 

  70. Zhu ZB, Makhija SK, Lu B, et al. Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 2004; 11:256–262.

    Article  PubMed  CAS  Google Scholar 

  71. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med 2001;345: 833–835.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu ZB, Makhija SK, Lu B, et al. Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 2004;11:645–648.

    Article  PubMed  CAS  Google Scholar 

  73. Bergelson JM, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 1998;72:415–419.

    PubMed  CAS  Google Scholar 

  74. Zinn KR, Douglas JT, Smyth CA, et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5). Gene Ther 1998;5:798–808.

    Article  PubMed  CAS  Google Scholar 

  75. Einfeld DA, Schroeder R, Roelvink PW, et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001;75:11,284–11,291.

    Article  CAS  Google Scholar 

  76. Roelvink PW, Mi L G, Einfeld DA, Kovesdi I, Wickham TJ. Identification of a conserved receptorbinding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999;286:1568–1571.

    Article  PubMed  CAS  Google Scholar 

  77. Smith TA, Idamakanti N, Rollence ML, et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14:777–787.

    Article  PubMed  CAS  Google Scholar 

  78. Smith TA, Idamakanti N, Marshall-Neff J, et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003;14:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  79. Adams JY, Johnson M, Sato M, et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002;8:891–897.

    PubMed  CAS  Google Scholar 

  80. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT. Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002;62:4663–4670.

    PubMed  CAS  Google Scholar 

  81. Orkin SH, Motulsky AG. Report and recommendation of the panel to assess the NIH invesment in research on gene therapy. National Institutes of Health, 1995.

    Google Scholar 

  82. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002;346:1185–1193.

    Article  PubMed  CAS  Google Scholar 

  83. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–2804.

    PubMed  CAS  Google Scholar 

  84. Losordo DW, Vale PR, Hendel RC, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105:2012–2018.

    Article  PubMed  CAS  Google Scholar 

  85. Walsh CE. Gene therapy progress and prospects: gene therapy for the hemophilias. Gene Ther 2003;10:999–1003.

    Article  PubMed  CAS  Google Scholar 

  86. Hecht JR, Bedford R, Abbruzzese JL, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003;9:555–561.

    PubMed  CAS  Google Scholar 

  87. Li ZY, Ni S, Yang X, Kiviat N, Lieber A. Xenograft models for liver metastasis: Relationship between tumor morphology and adenovirus vector transduction. Mol Ther 2004;9:650–657.

    Article  PubMed  CAS  Google Scholar 

  88. Dmitriev IP, Kashentseva EA, Curiel DT. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002;76:6893–6899.

    Article  PubMed  CAS  Google Scholar 

  89. Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ. Use of adenovirus protein IX (pIX) to display large polypeptides on the virion—generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 2004;9:617–624.

    Article  PubMed  CAS  Google Scholar 

  90. Vellinga J, Rabelink MJ, Cramer SJ, et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004;78:3470–3479.

    Article  PubMed  CAS  Google Scholar 

  91. Le L, Everts M, Dmitriev I, Davydova J, Yamamoto M, Curiel D. Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 2004;3:105–116.

    Article  PubMed  CAS  Google Scholar 

  92. Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT. An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 2004;324:103–116.

    Article  PubMed  CAS  Google Scholar 

  93. Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS, Barry MA. A chimeric adenovirus vector encoding reovirus attachment protein sigmal targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci U S A 2004;101:6188–6193.

    Article  PubMed  CAS  Google Scholar 

  94. Tsuruta Y, Pereboeva L, Glasgow JN, et al. Infectivity Enhemcement of an Adenovirus Vector via Genetic Incorporation of the Reovirus Spike Protein Sigma 1. Mol Ther 2004;9:S50–S51.

    Google Scholar 

  95. Alemany R, Lai S, Lou YC, Jan HY, Fang X, Zhang WW. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999;6:21–25.

    Article  PubMed  CAS  Google Scholar 

  96. Nagayama Y, Nakao K, Mizuguchi H, Hayakawa T, Niwa M. Enhanced antitumor effect of combined replicative adenovirus and nonreplicative adenovirus expressing interleukin-12 in an immunocompetent mouse model. Gene Ther 2003;10:1400–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yamamoto, M., Curiel, D.T. (2007). Tumor Targeting-Retargeted Adenovirus. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics