Skip to main content

Gene Silencing Therapy Against Cancer

  • Chapter
Book cover Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Over the past 25 yr, gene silencing therapy derived from nucleic acid-based molecules has evolved from bench research to clinical therapy. The recent discovery of RNA interference (RNAi), a mechanism by which double stranded RNAs mediate sequence-specific gene silencing, provided a new tool in the fight against cancer. The application of RNAi technology in basic cancer research will facilitate the identification and validation of potential therapeutic targets for cancer, and the elucidation of the molecular pathways governing cancer growth and development. RNAi technology could be further developed into therapeutics for cancer by selectively silencing aberrantly activated oncogenes. However, major challenges of delivery, specificity and efficacy need to be overcome before siRNAs can be used as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    PubMed  CAS  Google Scholar 

  2. Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 2003;21:1457–1465.

    PubMed  CAS  Google Scholar 

  3. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002;1:503–514.

    PubMed  CAS  Google Scholar 

  4. Opalinska JB, Gewirtz AM. Therapeutic potential of antisense nucleic acid molecules. Sci STKE 2003;2003:pe47.

    PubMed  Google Scholar 

  5. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004;3:318–329.

    PubMed  CAS  Google Scholar 

  6. Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003;270:1628–1644.

    PubMed  CAS  Google Scholar 

  7. Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 2002;1:347–355.

    PubMed  CAS  Google Scholar 

  8. Sharp PA. RNA interference—2001. Genes Dev 2001;15:485–490.

    PubMed  CAS  Google Scholar 

  9. Paddison PJ, Hannon GJ. RNA interference: the new somatic cell genetics? Cancer Cell 2002;2: 17–23.

    PubMed  CAS  Google Scholar 

  10. Zamore PD. Ancient pathways programmed by small RNAs. Science 2002;296:1265–1269.

    PubMed  CAS  Google Scholar 

  11. Hannon GJ. RNA interference. Nature 2002;418:244–251.

    PubMed  CAS  Google Scholar 

  12. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002;3:737–747.

    PubMed  CAS  Google Scholar 

  13. Tijsterman M, Ketting RF, Plasterk RH. The genetics of RNA silencing. Annu Rev Genet 2002;36:489–519.

    PubMed  CAS  Google Scholar 

  14. Aoki Y, Cioca DP, Oidaira H, Kamiya J, Kiyosawa K. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003;30:96–102.

    PubMed  CAS  Google Scholar 

  15. Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonu-cleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003;13:1–7.

    PubMed  CAS  Google Scholar 

  16. Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31:3185–3193.

    PubMed  Google Scholar 

  17. Xu Y, Zhang HY, Thormeyer D, et al. Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem Biophys Res Commun 2003;306:712–717.

    PubMed  CAS  Google Scholar 

  18. Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 2003;31:4417–4424.

    PubMed  CAS  Google Scholar 

  19. Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 2002;296:1000–1004

    PubMed  CAS  Google Scholar 

  20. Yokota T, Miyagishi M, Hino T, et al. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun 2004;314:283–291.

    PubMed  CAS  Google Scholar 

  21. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20:500–505.

    PubMed  CAS  Google Scholar 

  22. Drew HR, Lewy D, Conaty J, Rand KN, Hendry P, Lockett T. RNA hairpin loops repress protein synthesis more strongly than hammerhead ribozymes. Eur J Biochem 1999;266:260–273.

    PubMed  CAS  Google Scholar 

  23. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    PubMed  CAS  Google Scholar 

  24. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 1996;31:957–973.

    CAS  Google Scholar 

  25. Williams BR. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans 1997;25:509–513.

    PubMed  CAS  Google Scholar 

  26. Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 2000;5:107–114.

    PubMed  CAS  Google Scholar 

  27. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.

    PubMed  CAS  Google Scholar 

  28. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small doublestranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 2001;98:9742–9747.

    PubMed  CAS  Google Scholar 

  29. Paul CP, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002;20:505–508.

    PubMed  CAS  Google Scholar 

  30. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002;99:5515–5520.

    PubMed  CAS  Google Scholar 

  31. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002;16:948–958.

    PubMed  CAS  Google Scholar 

  32. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2:243–247.

    PubMed  CAS  Google Scholar 

  33. Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA 2002;8: 855–860.

    PubMed  CAS  Google Scholar 

  34. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 2002;99:6047–6052.

    PubMed  CAS  Google Scholar 

  35. Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002;20:497–500.

    PubMed  CAS  Google Scholar 

  36. Voorhoeve PM, Agami R. Knockdown stands up. Trends Biotechnol 2003;21:2–4.

    PubMed  CAS  Google Scholar 

  37. Tuschl T. Expanding small RNA interference. Nat Biotechnol 2002;20:446–448.

    PubMed  CAS  Google Scholar 

  38. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature 2002;418:38–39.

    PubMed  CAS  Google Scholar 

  39. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002;20:1006–1010.

    PubMed  CAS  Google Scholar 

  40. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002;32:107–108.

    PubMed  CAS  Google Scholar 

  41. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003;33:396–400.

    PubMed  CAS  Google Scholar 

  42. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.

    PubMed  CAS  Google Scholar 

  43. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. Germline transmission of RNAi in mice. Nat Struct Biol 2003; 10:91–92.

    PubMed  CAS  Google Scholar 

  44. Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 2003;100:1844–1848.

    PubMed  CAS  Google Scholar 

  45. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363–366.

    PubMed  CAS  Google Scholar 

  46. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001;20:6877–6888.

    PubMed  CAS  Google Scholar 

  47. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101:25–33.

    PubMed  CAS  Google Scholar 

  48. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293–296.

    PubMed  CAS  Google Scholar 

  49. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110:563–574.

    PubMed  CAS  Google Scholar 

  50. Schwarz DS, Hutvagner G, Haley B, Zamore PD. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 2002; 10:537–548.

    PubMed  CAS  Google Scholar 

  51. Carpenter AE, Sabatini DM. Systematic genome-wide screens of gene function. Nat Rev Genet 2004;5:11–22.

    PubMed  CAS  Google Scholar 

  52. Sugimoto A. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation 2004;72:81–91.

    PubMed  CAS  Google Scholar 

  53. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003;424:797–801.

    PubMed  CAS  Google Scholar 

  54. Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MR Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 2003; 12:627–637.

    PubMed  CAS  Google Scholar 

  55. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004;428:431–437.

    PubMed  CAS  Google Scholar 

  56. Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 2004;428:427–431.

    PubMed  CAS  Google Scholar 

  57. Zheng L, Liu J, Batalov S, et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci U S A 2004;101:135–140.

    PubMed  CAS  Google Scholar 

  58. Sen G, Wehrman TS, Myers JW, Blau HM. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet 2004;36:183–189.

    PubMed  CAS  Google Scholar 

  59. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K. Enzymatic production of RNAi libraries from cDNAs. Nat Genet 2004;36:190–196.

    PubMed  CAS  Google Scholar 

  60. Luo B, Heard AD, Lodish HE Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci U S A 2004; 101:5494–5499.

    PubMed  CAS  Google Scholar 

  61. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 2003; 63:4801–4804.

    PubMed  CAS  Google Scholar 

  62. Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003;77:8957–8961.

    PubMed  CAS  Google Scholar 

  63. Matsukura S, Jones PA, Takai D. Establishment of conditional vectors for hairpin siRNA knock-downs. Nucleic Acids Res 2003;31:e77.

    PubMed  Google Scholar 

  64. Czauderna F, Santel A, Hinz M, et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 2003;31:e127.

    PubMed  Google Scholar 

  65. van de Wetering M, Oving I, Muncan V, et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003;4:609–615.

    PubMed  Google Scholar 

  66. Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2004;101:1927–1932.

    PubMed  CAS  Google Scholar 

  67. Schuck S, Manninen A, Honsho M, Fullekrug J, Simons K. Generation of single and double knock-downs in polarized epithelial cells by retrovirus-mediated RNA interference. Proc Natl Acad Sci U S A 2004;101:4912–4917.

    PubMed  CAS  Google Scholar 

  68. Yu JY, Taylor J, DeRuiter SL, Vojtek AB, Turner DL. Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors. Mol Ther 2003;7:228–236.

    PubMed  CAS  Google Scholar 

  69. Howard K. Unlocking the money-making potential of RNAi. Nat Biotechnol 2003;21:1441–1446.

    PubMed  CAS  Google Scholar 

  70. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347–351.

    PubMed  CAS  Google Scholar 

  71. Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci U S A 2003; 100:7797–7802.

    PubMed  CAS  Google Scholar 

  72. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21:639–644.

    PubMed  CAS  Google Scholar 

  73. Song E, Lee SK, Dykxhoorn DM, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 2003;77:7174–7181.

    PubMed  CAS  Google Scholar 

  74. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003;327:761–766.

    PubMed  CAS  Google Scholar 

  75. Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 2003;9:1291–1300.

    PubMed  CAS  Google Scholar 

  76. Li K, Lin SY, Brunicardi FC, Seu P. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 2003;63:3593–3597.

    PubMed  CAS  Google Scholar 

  77. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 2003;63:3919–3922.

    PubMed  CAS  Google Scholar 

  78. Yang G, Thompson JA, Fang B, Liu J. Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer. Oncogene 2003;22:5694–5701.

    PubMed  CAS  Google Scholar 

  79. Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2003;8:762–768.

    PubMed  CAS  Google Scholar 

  80. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003;9:210–216.

    PubMed  CAS  Google Scholar 

  81. Martinez LA, Naguibneva I, Lehrmann H, et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A 2002;99: 14,849–14,854.

    CAS  Google Scholar 

  82. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002;21:5716–5724

    PubMed  CAS  Google Scholar 

  83. Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003;303:1169–1178.

    PubMed  CAS  Google Scholar 

  84. Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, Chemical, and Structural Variation of Small Interfering RNAs and Short Hairpin RNAs and the Effect on Mammalian Gene Silencing. Antisense Nucleic Acid Drug Dev 2003;13:83–105.

    PubMed  CAS  Google Scholar 

  85. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 2003;100: 6347–6352.

    PubMed  CAS  Google Scholar 

  86. Chi JT, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A 2003; 100:6343–6346.

    PubMed  CAS  Google Scholar 

  87. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635–637.

    PubMed  CAS  Google Scholar 

  88. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 2004;101:1892–1897.

    PubMed  CAS  Google Scholar 

  89. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004; 10:12–18.

    PubMed  CAS  Google Scholar 

  90. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003;34:263–264.

    PubMed  CAS  Google Scholar 

  91. Sledz CA, Holko M, De Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5:834–839.

    PubMed  CAS  Google Scholar 

  92. Kim DH, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 2004;22:321–325.

    PubMed  CAS  Google Scholar 

  93. Abdelgany A, Wood M, Beeson D. Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum Mol Genet 2003; 12:2637–2644.

    PubMed  CAS  Google Scholar 

  94. Ding H, Schwarz DS, Keene A, et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2003;2:209–217.

    PubMed  CAS  Google Scholar 

  95. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001;114:4557–4565.

    PubMed  CAS  Google Scholar 

  96. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002;26:199–213.

    PubMed  CAS  Google Scholar 

  97. Hsieh AC, Bo R, Manola J, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res 2004;32:893–901.

    PubMed  CAS  Google Scholar 

  98. Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32:936–948.

    PubMed  CAS  Google Scholar 

  99. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209–216.

    PubMed  CAS  Google Scholar 

  100. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115:199–208.

    PubMed  CAS  Google Scholar 

  101. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326–330.

    PubMed  CAS  Google Scholar 

  102. Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 2002;295:2456–2459.

    PubMed  CAS  Google Scholar 

  103. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001; 107:465–476.

    PubMed  CAS  Google Scholar 

  104. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31:2705–2716.

    PubMed  CAS  Google Scholar 

  105. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003;31:589–595.

    PubMed  CAS  Google Scholar 

  106. Paule MR, White RJ. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 2000;28:1283–1298.

    PubMed  CAS  Google Scholar 

  107. Rutz S, Scheffold A. Towards in vivo application of RNA interference — new toys, old problems. Arthritis Res Ther 2004;6:78–85.

    PubMed  CAS  Google Scholar 

  108. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–3988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Song, CZ. (2007). Gene Silencing Therapy Against Cancer. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics