Skip to main content

Adenovector-Mediated Cancer Gene Therapy

  • Chapter
Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Early-region (E1)-deleted, replication-defective adenovectors have been widely used in preclinical and clinical studies of cancer gene therapy. Recently, the use of conditional replicating or oncolytic adenovectors in cancer gene therapy or virotherapy has received much attention. Clinical trials with E1-deleted adenovectors and oncolytic adenovirus have shown that adenovector-mediated cancer gene therapy is well tolerated and can produce clinical responses in patients with advanced diseases. Moreover, numerous strategies to improve vector safety and therapeutic efficacy have been explored, including vector modification and the development of vector formulations to enhance transduction efficiency, to modulate tropism for vector targeting, to improve controlled or tissue-specific transgene expression, and to reduce vector-related toxicity. Yet, much has to be improved in this type of vector system to ensure its future success in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massie B, Gluzman Y, Hassell JA. Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen. Mol Cell Biol 1986;6:2872–2883.

    PubMed  CAS  Google Scholar 

  2. Davis AR, Kostek B, Mason BB, et al. Expression of hepatitis B surface antigen with a recombinant adenovirus. Proc Natl Acad Sci U S A 1985;82:7560–7564.

    PubMed  CAS  Google Scholar 

  3. Yamada M, Lewis JA, Grodzicker T. Overproduction of the protein product of a nonselected foreign gene carried by an adenovirus vector. Proc Natl Acad Sci U S A 1985;82:3567–3571.

    PubMed  CAS  Google Scholar 

  4. Stratford-Perricaudet LD, Levrero M, Chasse JF, Perricaudet M, Briand P. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum Gene Ther 1990; 1:241–256.

    PubMed  CAS  Google Scholar 

  5. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL. Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 2000; 165:2886–2894.

    PubMed  CAS  Google Scholar 

  6. Andrews KJ, Ribas A, Butterfield LH, et al. Adenovirus-interleukin-12-mediated tumor regression in a murine hepatocellular carcinoma model is not dependent on CD1-restricted natural killer T cells. Cancer Res 2000;60:6457–6464.

    PubMed  CAS  Google Scholar 

  7. Bui LA, Butterfield LH, Kim JY, et al. In vivo therapy of hepatocellular carcinoma with a tumorspecific adenoviral vector expressing interleukin-2 [see comments]. Hum Gene Ther 1997;8:2173–2182.

    PubMed  CAS  Google Scholar 

  8. Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD, Mixson AJ. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther 1995;6:395–405.

    PubMed  CAS  Google Scholar 

  9. Rosenberg SA, Blaese RM, Brenner MK, et al. Human gene marker/therapy clinical protocols. Hum Gene Ther 2000; 11:919–979.

    PubMed  CAS  Google Scholar 

  10. Vollmer CM, Ribas A, Butterfield LH, et al. p53 selective and nonselective replication of an E1Bdeleted adenovirus in hepatocellular carcinoma. Cancer Res 1999;59:4369–4374.

    PubMed  CAS  Google Scholar 

  11. Anonymous. Human gene marker/therapy clinical protocols (complete updated listings). Hum Gene Ther 2001;12:2251–2337.

    Google Scholar 

  12. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997;89:21–39.

    PubMed  CAS  Google Scholar 

  13. Roth JA, Swisher SG, Merritt JA, et al. Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Sem Oncol 1998;25:33–37.

    CAS  Google Scholar 

  14. Habib NA, Hodgson HJ, Lemoine N, Pignatelli M. A phase I/II study of hepatic artery infusion with wtp53-CMV-Ad in metastatic malignant liver tumours. Hum Gene Ther 1999; 10:2019–2034.

    PubMed  CAS  Google Scholar 

  15. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10:1239–1249.

    PubMed  CAS  Google Scholar 

  16. Roth JA, Grammer SF, Swisher SG, et al. Gene therapy approaches for the management of non-small cell lung cancer. Sem Oncol 2001;28:50–56.

    CAS  Google Scholar 

  17. Swisher SG, Roth JA, Carbone DP. Genetic and immunologic therapies for lung cancer. Sem Oncol 2002;29:95–101.

    CAS  Google Scholar 

  18. Kirn D. Clinical research results with dl1520 (ONYX-015), a repication-selective adenovirus for the treatment of cancer: what have we learned. Gene Ther 2001;8:89–98.

    PubMed  CAS  Google Scholar 

  19. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectivelyreplicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000;6:879–885.

    PubMed  CAS  Google Scholar 

  20. Raper SE, Yudkoff M, Chirmule N, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13:163–175.

    PubMed  CAS  Google Scholar 

  21. Morral N, O’Neal WK, Rice K, et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13:143–154.

    PubMed  CAS  Google Scholar 

  22. Anonymous. NIH Report±Assessment of adenoviral vector safety and toxicity: Report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 2002; 13: 3–13.

    Google Scholar 

  23. Rowe WP, Huebner RJ, Gilmore LK, Parrot RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 1953;84:570–573.

    PubMed  CAS  Google Scholar 

  24. Hilleman MR, Werner JH. Recovery of new agents from patients with acute respiratory illness. Proc Soc Exp Biol Med 1954;85:183–188.

    PubMed  CAS  Google Scholar 

  25. Shenk T. Adenoviridae: the viruses and their replication. In: Fundamental Virology, Third Edition Fields BN, Knipe DM, Howley PM, eds Philadelphia: Lippincott-Raven, 1996; pp. 979–1016.

    Google Scholar 

  26. Kojaoghlanian T, Flomenberg P, Horwitz MS. The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 2003;13:155–171.

    PubMed  Google Scholar 

  27. Hierholzer JC. Further subgrouping of the human adenoviruses by differential hemagglutination. J Infect Dis 1973;128:541–550.

    PubMed  CAS  Google Scholar 

  28. Roberts RJ, O’ Neill KE, Yen CT. DNA sequences from the adenovirus 2 genome. J Biol Chem 1984;259:13,968–13,975.

    CAS  Google Scholar 

  29. Chroboczek J, Bieber F, Jacrot B. The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 1992;186:280–285.

    PubMed  CAS  Google Scholar 

  30. Hammarskjold ML, Winberg G. Encapsidation of adenovirus 16 DNA is directed by a small DNA sequence at the left end of the genome. Cell 1980;20:787–795.

    PubMed  CAS  Google Scholar 

  31. Grable M, Hearing P. cis and trans requirements for the selective packaging of adenovirus type 5 DNA. J Virol 1992;66:723–731.

    PubMed  CAS  Google Scholar 

  32. Hearing P, Samulski RJ, Wishart WL, Shenk T. Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J Virol 1987;61:2555–2558.

    PubMed  CAS  Google Scholar 

  33. San Martin C, Burnett RM. Structural studies on adenoviruses. Curr Topic Microbiol Immunol 2003;272:57–94.

    CAS  Google Scholar 

  34. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323.

    PubMed  CAS  Google Scholar 

  35. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319.

    PubMed  CAS  Google Scholar 

  36. Greber UF, Willetts M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993;75:477–486.

    PubMed  CAS  Google Scholar 

  37. Graham FL. Covalently closed circles of human adenovirus DNA are infectious. EMBO J 1984;3:2917–2922.

    PubMed  CAS  Google Scholar 

  38. Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993;67:5911–5921.

    PubMed  CAS  Google Scholar 

  39. Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 1994;91:8802–8806.

    PubMed  CAS  Google Scholar 

  40. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59–74.

    PubMed  CAS  Google Scholar 

  41. Fallaux FJ, Kranenburg O, Cramer SJ, et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996;7:215–222.

    PubMed  CAS  Google Scholar 

  42. Graham FL, Prevec L Methods for construction of adenovirus vectors. Mol Biotech 1995;3:207–220.

    CAS  Google Scholar 

  43. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein BA. Simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 1998;95:2509–2514.

    PubMed  CAS  Google Scholar 

  44. Mizuguchi H, Kay MA, Hayakawa T. Approaches for generating recombinant adenovirus vectors. Adv Drug Rev 2001;52:165–176.

    CAS  Google Scholar 

  45. Mizuguchi H, Kay MA, Hayakawa T. In vitro ligation-based cloning of foreign DNAs into the E3 and E1 deletion regions for generation of recombinant adenovirus vectors. Biotechniques 2001;30:1112–1114.

    PubMed  CAS  Google Scholar 

  46. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A 1994;91:4407–4411.

    PubMed  CAS  Google Scholar 

  47. Fang B, Eisensmith RC, Li XH, et al. Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther 1994; 1:247–254.

    PubMed  CAS  Google Scholar 

  48. Kay MA, Landen CN, Rothenberg SR, et al. In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc Natl Acad Sci U S A 1994;91: 2353–2357.

    PubMed  CAS  Google Scholar 

  49. Fang B, Eisensmith RC, Wang H, et al. Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression. Hum Gene Ther 1995;6:1039–1044.

    PubMed  CAS  Google Scholar 

  50. Zhou H, O’ Neal W, Morral N, Beaudet AL. Development of a complementing cell line and a system for construction of adenovirus vectors with E1 and E2a deleted. J Virol 1996;70:7030–7038.

    PubMed  CAS  Google Scholar 

  51. Fang B, Koch P, Roth JA. Diminishing adenovirus gene expression and viral replication by promoter replacement. J Virol 1997;71:4798–4803.

    PubMed  CAS  Google Scholar 

  52. Armentano D, Sookdeo CC, Hehir KM, et al. Characterization of an adenovirus gene transfer vector containing an E4 deletion. Hum Gene Ther 1995;6:1343–1353.

    PubMed  CAS  Google Scholar 

  53. Brough DE, Lizonova A, Hsu C, Kulesa VA, Kovesdi I. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 1996;70: 6497–6501.

    PubMed  CAS  Google Scholar 

  54. Mitani K, Graham FL, Caskey CT, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A 1995;92:3854–3858.

    PubMed  CAS  Google Scholar 

  55. Morsy MA, Gu M, Motzel S, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998;95:7866–7871.

    PubMed  CAS  Google Scholar 

  56. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 1996;93:13,565–13,570.

    CAS  Google Scholar 

  57. Ji L, Bouvet M, Price RE, Roth JA, Fang B. Reduced toxicity, attenuated immunogenicity and efficient mediation of human p53 gene expression in vivo by an adenovirus vector with deleted E1, E3 and inactivated E4 by GAL4-TATA promoter replacement. Gene Ther 1999;6:393–402.

    PubMed  CAS  Google Scholar 

  58. Morral N, O’Neal W, Rice K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 1999;96:12,816–12,821.

    CAS  Google Scholar 

  59. Lin T, Gu J, Zhang L, et al. Enhancing adenovirus-mediated gene transfer in vitro and in vivo by addition of protamine and hydrocortisone. J Gene Med 2003;5:868–875.

    PubMed  CAS  Google Scholar 

  60. Croyle MA, Cheng X, Sandhu A, Wilson JM. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther 2001;4:22–28.

    PubMed  CAS  Google Scholar 

  61. Connor RJ, Engler H, Machemer T, et al. Identification of polyamides that enhance adenovirusmediated gene expression in the urothelium. Gene Ther 2001;8:41–48.

    PubMed  CAS  Google Scholar 

  62. Li Y, Okegawa T, Lombardi DP, Frenkel EP, Hsieh JT. Enhanced transgene expression in androgen independent prostate cancer gene therapy by taxane chemotherapeutic agents. J Urol 2002;167:339–346.

    PubMed  CAS  Google Scholar 

  63. Bouvet M, Fang B, Ekmekcioglu S, et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther 1998;5:189–195.

    PubMed  CAS  Google Scholar 

  64. Croyle MA, Chirmule N, Zhang Y, Wilson JM. “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 2001;75:4792–4801.

    PubMed  CAS  Google Scholar 

  65. Croyle MA, Yu QC, Wilson JM. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum Gene Ther 2000; 11:1713–1722.

    PubMed  CAS  Google Scholar 

  66. Ohsawa T, Nakamura T, Mihara M, Sato K. Enhancement of adenovirus-mediated gene transfer into dermal fibroblasts in vitro and in vivo by polyethylene glycol 6000. J Dermatol 2000;27:244–251.

    PubMed  CAS  Google Scholar 

  67. O’Riordan CR, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. [see comments]. Hum Gene Ther 1999;10:1349–1358.

    PubMed  CAS  Google Scholar 

  68. Chillon M, Lee JH, Fasbender A, Welsh MJ. Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 1998;5:995–1002.

    PubMed  CAS  Google Scholar 

  69. Siemens DR, Elzey BD, Lubaroff DM, et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J Immunol 2001; 166: 731–735.

    PubMed  CAS  Google Scholar 

  70. Kukowska-Latallo JF, Chen C, Eichman J, Bielinska AU, Baker JR, Jr. Enhancement of dendrimermediated transfection using synthetic lung surfactant exosurf neonatal in vitro. Biochem Biophys Res Comm 1999;264:253–261.

    PubMed  CAS  Google Scholar 

  71. Raczka E, Kukowska-Latallo JF, Rymaszewski M, Chen C, Baker JR, Jr. The effect of synthetic surfactant Exosurf on gene transfer in mouse lung in vivo. Gene Ther 1998;5:1333–1339.

    PubMed  CAS  Google Scholar 

  72. Matthews C, Jenkins G, Hilfinger J, Davidson B. Poly-L-lysine improves gene transfer with adenovirus formulated in PLGA microspheres. Gene Ther 1999;6:1558–1564.

    PubMed  CAS  Google Scholar 

  73. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53deficient human tumor cells. Science 1996;274:373–376.

    PubMed  CAS  Google Scholar 

  74. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.

    PubMed  CAS  Google Scholar 

  75. Hall AR, Dix BR, O’Carrol SJ, Braithwaite AW. p53-dependent cell death/apoptosis is required for a productive adenovirus infection [see comments]. Nat Med 1998;4:1068–1072.

    PubMed  CAS  Google Scholar 

  76. Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998;72:9479–9490.

    PubMed  CAS  Google Scholar 

  77. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997;57:2559–2563.

    PubMed  CAS  Google Scholar 

  78. Hallenbeck PL, Chang YN, Hay C, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999;10:1721–1733.

    PubMed  CAS  Google Scholar 

  79. Brunori M, Malerba M, Kashiwazaki H, Iggo R. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J Virol 2001;75:2857–2865.

    PubMed  CAS  Google Scholar 

  80. Fueyo J, Alemany R, Gomez-Manzano C, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 2003;95:652–660.

    PubMed  CAS  Google Scholar 

  81. Cascallo M, Capella G, Mazo A, Alemany R. Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 2003;63:5544–5550.

    PubMed  CAS  Google Scholar 

  82. Shenk T, Jones N, Colby W, Fowlkes D. Functional analysis of adenovirus-5 host-range deletion mutants defective for transformation of rat embryo cells. Cold Spring Harbor Symposia on Quantitative Biology, 1980;44 Pt 1, 367–375.

    PubMed  CAS  Google Scholar 

  83. Zhao T, Rao XM, Xie X, et al. Adenovirus with insertion-mutated E1A selectively propagates in liver cancer cells and destroys tumors in vivo. Cancer Res 2003;63:3073–3078.

    PubMed  CAS  Google Scholar 

  84. Wadler S, Yu B, Tan JY, et al. Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gall bladder carcinoma implants. Clin Cancer Res 2003;9:33–43.

    PubMed  CAS  Google Scholar 

  85. Van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002;62:6165–6171.

    PubMed  Google Scholar 

  86. Sauthoff H, Pipiya T, Heitner S, et al. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 2002;13:1859–1871.

    PubMed  CAS  Google Scholar 

  87. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS. Tumor-specific, replicationcompetent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000;74:6147–6155.

    PubMed  CAS  Google Scholar 

  88. Higginbotham JN, Seth P, Blaese RM, Ramsey WJ. The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 2002;13:129–141.

    PubMed  CAS  Google Scholar 

  89. Crystal RG, Harvey BG, Wisnivesky JP, et al. Analysis of risk factors for local delivery of low-and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther 2002; 13:65–100.

    PubMed  CAS  Google Scholar 

  90. Harvey BG, Maroni J, O’ Donoghue KA, et al. Safety of local delivery of low-and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002;13:15–63.

    PubMed  CAS  Google Scholar 

  91. Wickham TJ. Targeting adenovirus. Gene Ther 2000;7:110–114.

    PubMed  CAS  Google Scholar 

  92. Barnett BG, Crews CJ, Douglas JT. Targeted adenoviral vectors. [Review] [162 refs]. Biochimica Biophysica Acta 2002; 1575:1–14.

    CAS  Google Scholar 

  93. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14:1574–1578.

    PubMed  CAS  Google Scholar 

  94. Gu DL, Gonzalez AM, Printz MA, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999;59:2608–2614.

    PubMed  CAS  Google Scholar 

  95. Goldman CK, Rogers BE, Douglas JT, et al. Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res 1997;57:1447–1451.

    PubMed  CAS  Google Scholar 

  96. Van Beusechem VW, Grill J, Mastenbroek DC, et al. Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. J Virol 2002;76:2753–2762.

    PubMed  Google Scholar 

  97. Miller CR, Buchsbaum DJ, Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998;58:5738–5748.

    PubMed  CAS  Google Scholar 

  98. Nettelbeck DM, Miller DW, Jerome V, et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Molecular Therapy: J Am Soc Gene Ther 2001;3:882–891.

    CAS  Google Scholar 

  99. Wesseling JG, Bosma PJ, Krasnykh V, et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 2001;8:969–976.

    PubMed  CAS  Google Scholar 

  100. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000;74:6875–6884.

    PubMed  CAS  Google Scholar 

  101. Stevenson SC, Rollence M, Marshall-Neff J, McClelland A. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J Virol 1997;71:4782–4790.

    PubMed  CAS  Google Scholar 

  102. Yotnda P, Onishi H, Heslop HE, et al. Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 2001;8:930–937.

    PubMed  CAS  Google Scholar 

  103. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 1996; 14: 1570–1573.

    PubMed  CAS  Google Scholar 

  104. Pearson AS, Koch PE, Atkinson N, et al. Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines. Clin Cancer Res 1999;5:4208–4213.

    PubMed  CAS  Google Scholar 

  105. Wickham TJ, Tzeng E, Shears LL 2nd, Roelvink PW, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997;71:8221–8229.

    PubMed  CAS  Google Scholar 

  106. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998;72:9706–9713.

    PubMed  CAS  Google Scholar 

  107. Lamfers ML, Grill J, Dirven CM, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002;62:5736–5742.

    PubMed  CAS  Google Scholar 

  108. Asada-Mikami R, Heike Y, Kanai S, et al. Efficient gene transduction by RGD-fiber modified recombinant adenovirus into dendritic cells. Jap J Cancer Res 2001;92:321–327.

    CAS  Google Scholar 

  109. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377–380.

    PubMed  CAS  Google Scholar 

  110. Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999;17:768–774.

    PubMed  CAS  Google Scholar 

  111. Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 2000;102:231–237.

    PubMed  CAS  Google Scholar 

  112. Kolonin M, Pasqualini R, Arap W. Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 2001;5:308–313.

    PubMed  CAS  Google Scholar 

  113. Pasqualini R, Koivunen E, Ruoslahti EA. Peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 1995;130:1189–1196.

    PubMed  CAS  Google Scholar 

  114. Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000;60:722–727.

    PubMed  CAS  Google Scholar 

  115. Roelvink PW, Mi LG, Einfeld DA, Kovesdi I, Wickham TJ. Identification of a conserved receptorbinding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999;286:1568–1571.

    PubMed  CAS  Google Scholar 

  116. Pizzato M, Blair ED, Fling M, et al. Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells. Gene Ther 2001;8:1088–1096.

    PubMed  CAS  Google Scholar 

  117. Leissner P, Legrand V, Schlesinger Y, et al. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther 2001;8:49–57.

    PubMed  CAS  Google Scholar 

  118. Nettelbeck DM, Jerome V, Muller R. Gene therapy: designer promoters for tumour targeting. Trends Genet 2000;6:174–181.

    Google Scholar 

  119. Clary BM, Lyerly HK. Transcriptional targeting for cancer gene therapy. [Review] [21 refs]. Surg Oncol Clin North Am 1998;7:565–574.

    CAS  Google Scholar 

  120. Osaki T, Tanio Y, Tachibana I, et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994;54:5258–5261.

    PubMed  CAS  Google Scholar 

  121. Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum Gene Ther 1995;6:881–893.

    PubMed  CAS  Google Scholar 

  122. Ido A, Nakata K, Kato Y, et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res 1995;55:3105–3109.

    PubMed  CAS  Google Scholar 

  123. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res 1995;55:5283–5287.

    PubMed  CAS  Google Scholar 

  124. Andriani F, Nan B, Yu J, et al. Use of the probasin promoter ARR2PB to express Bax in androgen receptor-positive prostate cancer cells. J Natl Cancer Inst 2001;93:1314–1324.

    PubMed  CAS  Google Scholar 

  125. Gotoh A, Ko SC, Shirakawa T, et al. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer. J Urol 1998; 160:220–229.

    PubMed  CAS  Google Scholar 

  126. Chen L, Chen D, Manome Y, Dong Y, Fine HA, Kufe DW. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest 1995;96:2775–2782.

    PubMed  CAS  Google Scholar 

  127. Parr MJ, Manome Y, Tanaka T, et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat Med 1997;3:1145–1149.

    PubMed  CAS  Google Scholar 

  128. Gerdes CA, Castro MG, Lowenstein PR. Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol Ther J Am Soc Gene Ther 2000;2:330–338.

    CAS  Google Scholar 

  129. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequence essential for transcriptional activation in immortalized and cancer cells. Cancer Res 1999;59:551–557.

    PubMed  CAS  Google Scholar 

  130. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000;60:5359–5364.

    PubMed  CAS  Google Scholar 

  131. Komata T, Kondo Y, Kanzawa T, et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 2001;61:5796–5802.

    PubMed  CAS  Google Scholar 

  132. Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1989;59:521–529.

    PubMed  CAS  Google Scholar 

  133. Blackburn EH. Telomerases. [Review] [31 refs]. Ann Rev Biochem 1992;61:113–129.

    PubMed  CAS  Google Scholar 

  134. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011–2015.

    PubMed  CAS  Google Scholar 

  135. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992;11:1921–1929.

    PubMed  CAS  Google Scholar 

  136. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. [Review] [51 refs]. Eur J Cancer 1997;33:787–791.

    PubMed  CAS  Google Scholar 

  137. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997;277:955–959.

    PubMed  CAS  Google Scholar 

  138. Nakayama J, Tahara H, Tahara E, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998; 18:65–68.

    PubMed  CAS  Google Scholar 

  139. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997;90:785–795.

    PubMed  CAS  Google Scholar 

  140. Gu J, Andreeff M, Roth JA, Fang B. hTERT Promoter Induces Tumor-Specific Bax Gene Expression and Cell Killing in Syngenic Mouse Tumor Model and Prevents Systemic Toxicity. Gene Ther 2002; 9:30–37.

    PubMed  CAS  Google Scholar 

  141. Gu J, Zhang L, Huang X, et al. A novel single tetracycline-regulative adenoviral vector for tumorspecific Bax gene expression and cell killing in vitro and in vivo. Oncogene 2002;21:4757–4764.

    PubMed  CAS  Google Scholar 

  142. Huang X, Lin T, Gu J, et al. Combined TRAIL and Bax gene therapy prolonged survival in mice with ovarian cancer xenograft. Gene Ther 2002;9:1379–1386.

    PubMed  CAS  Google Scholar 

  143. Lin T, Gu J, Zhang L, et al. Targeted expression of green fluorescent protein/Tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effect on primary human hepatocytes. Cancer Res 2002;62:3620–3625.

    PubMed  CAS  Google Scholar 

  144. Lin T, Huang X, Gu J, et al. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002;21:8020–8028.

    PubMed  CAS  Google Scholar 

  145. Koga S, Hirohata S, Kondo Y, et al. A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 2000;11:1397–1406.

    PubMed  CAS  Google Scholar 

  146. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 2003;10:1241–1247.

    PubMed  CAS  Google Scholar 

  147. Wirth T, Zender L, Schulte B, et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003;63:3181–3188.

    PubMed  CAS  Google Scholar 

  148. Koch P, Guo ZS, Kagawa S, Gu J, Roth JA, Fang B. Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene regulatory system. Mol Ther J Am Soc Gene Ther 2001;3:278–283.

    CAS  Google Scholar 

  149. Qiao J, Doubrovin M, Sauter BV, et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002;9:168–175.

    PubMed  CAS  Google Scholar 

  150. Sadowski I, Ma J, Triezenberg S, Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 1988;335:563–564.

    PubMed  CAS  Google Scholar 

  151. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992;89:5547–5551.

    PubMed  CAS  Google Scholar 

  152. Gu J, Fang B. Telomerase promoter-driven cancer gene therapy. Cancer Biol Ther 2003;2:S64–S70.

    PubMed  CAS  Google Scholar 

  153. Swisher SG, Roth JA, Nemunaitis J, et al. Adenovirus-mediated p53 gene transfer in advanced nonsmall-cell lung cancer. J Natil Cancer Inst 1999;91:763–771.

    CAS  Google Scholar 

  154. dayman GL, e Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998;16:2221–2232.

    PubMed  CAS  Google Scholar 

  155. Bier-Laning CM, VanEcho D, Yver A, Dreiling LK. A phase II multicenter study of AD5CMV-P53 administered intratumorally to patients with recurrent head and neck cancer. Proc Am Sco Clin Oncol 1999; 18:444a.

    Google Scholar 

  156. Goodwin WJ, Esser D, dayman GL, Nemunaitis J, Yver A, Dreiling LK. Randomized phase II study of intratumoral injection of two dosing schedules using a replication-deficient adenovirus carrying the p53 gene (AD5CMV-P53) in patients with recurrent/refractory head and nech cancer. Proc Am Sco Clin Oncol 1999;19:445a.

    Google Scholar 

  157. Nemunaitis J, Swisher SG, Timmons T, et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000;18:609–622.

    PubMed  CAS  Google Scholar 

  158. Schuler M, Herrmann R, De Greve JL, et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol 2001;19:1750–1758

    PubMed  CAS  Google Scholar 

  159. Buller RE, Shahin MS, Horowitz JA, et al. Long term follow-up of patients with recurrent ovarian cancer after Adp53 gene replacement with SCH58500. Cancer Gene Ther 2002;9:567–572.

    PubMed  CAS  Google Scholar 

  160. Broaddus WC, Liu Y, Steele LL, et al. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 1999;91:997–1004.

    PubMed  CAS  Google Scholar 

  161. Jasty R, Lu J, Irwin T, Suchard S, Clarke MF, Castle VP. Role of p53 in the regulation of irradiationinduced apoptosis in neuroblastoma cells. Mol Genet Metab 1998;65:155–164.

    PubMed  CAS  Google Scholar 

  162. Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA. Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 1996;2:1665–1671.

    PubMed  CAS  Google Scholar 

  163. Swisher SG, Roth JA, Komaki R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res 2003;9:93–101.

    PubMed  CAS  Google Scholar 

  164. Peng Z, Han D, Zhang S, et al. Clinical evaluation of safety and efficacy of intratumoral administration of a recombinant adenoviral-p53 anticancer agent (Genkaxin). Mol Ther 2003;7:S422.

    Google Scholar 

  165. Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000; 11:2197–2205.

    PubMed  CAS  Google Scholar 

  166. Sung MW, Yeh HC, Thung SN, et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther J Am Soc Gen Ther 2001;4:182–191.

    CAS  Google Scholar 

  167. Shalev M, Kadmon D, Teh BS, et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 2000; 163:1747–1750.

    PubMed  CAS  Google Scholar 

  168. Nemunaitis J, Cunningham C, Buchanan A, et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001;8:746–759.

    PubMed  CAS  Google Scholar 

  169. Habib NA, Sarraf CE, Mitry RR, et al. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther 2001; 12:219–226.

    PubMed  CAS  Google Scholar 

  170. Reid T, Galanis E, Abbruzzese J, et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 2001;8:1618–1626.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fang, B., Roth, J.A. (2007). Adenovector-Mediated Cancer Gene Therapy. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics