Skip to main content

DNA-Based Nanoelectronics

  • Chapter
NanoBioTechnology

Abstract

We discuss the basic inspiration underlying the drive towards using DNA molecules for nanotechnological applications, and focus on their potential use to develop novel nanoelectronic devices. We thus review the current level of understanding of the behavior of DNA polymers as conducting wires, based on experimental and theoretical investigations of the electronic properties, determined by the π superposition along the helical stack. First, the importance of immobilizing molecules onto inorganic substrates in view of technological applications is outlined: selected observations by suitable imaging techniques are noted. Then, the emphasis is shifted to investigations of the electronic structure: disappointing evidence for negligible conductivity, from both theory and experiment, on double-stranded DNA molecules, has recently been counterbalanced by clear-cut measurements of high currents under controlled experimental conditions that rely on avoiding nonspecific molecule-substrate interactions and realizing electrode-molecule covalent binding. As a parallel effort, scientists are now tracing the route toward the exploration of tailored DNA derivatives that may exhibit enhanced conductivity. We illustrate a few promising candidates and the first studies on such novel molecular wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drexler KE. Building molecular machine systems. Nanotechnology 1999;17:5–7.

    CAS  Google Scholar 

  2. Merkle RC. Biotechnology as a route to nanotechnology. Nanotechnology 1999;17:271–274.

    Article  CAS  Google Scholar 

  3. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baynex F. Molecular biomimetics: nanotechnology through biology. Nat Mater 2003;2:577–585.

    Article  CAS  Google Scholar 

  4. Lowe CR. Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 2000;10:428–434.

    Article  CAS  Google Scholar 

  5. Lehn JM. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chemie Int Ed 1990;29:1304–1319.

    Article  Google Scholar 

  6. Goodsell, DS. Bionanotechnology-Lessons from Nature. Hoboken: Wiley, 2004.

    Google Scholar 

  7. Lodish H, Berk A, Zipurski SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology, 4th ed. New York: Freeman & Co, 2000.

    Google Scholar 

  8. Amabilino DB, Stoddart JF. Interlocked and intertwined structures and superstructures. Chem Rev 1995;95:2725–2828.

    Article  CAS  Google Scholar 

  9. Balzani V, Credi A, Raymo FM, Stoddart JF. Artificial molecular machines. Angew Chemie Int Ed 2000;39:3348–3391.

    Article  CAS  Google Scholar 

  10. Balzani V, Credi A, Venturi M. Molecular Devices and Machines. A Journey into the Nano World. Weinheim: Wiley-VCH, 2003.

    Google Scholar 

  11. Wilson M, Kannangara K, Smith G, Simmons M, Raguse B. Nanotechnology-Basic Science and Emerging Technologies. Boca Raton: Chapman & Hall/ CRC, 2002.

    Google Scholar 

  12. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998;391:775–778.

    Article  CAS  Google Scholar 

  13. Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E. Sequence-specific molecular lithography on single DNA molecules. Science 2002; 297:72–75.

    Article  CAS  Google Scholar 

  14. Keren K, Berman RS, Buchstab E, Sivan U, Braun E. DNA-templated carbon nanotube field-effect transistor. Science 2003;302:1380–1382.

    Article  CAS  Google Scholar 

  15. De Rienzo F, Gabdoulline RR, Menziani MC, Wade R. Blue copper proteins: a comparative analysis of their molecular interaction properties. Prot Sci 2000;9:1439–1454.

    Google Scholar 

  16. Murphy LM, Dodd FE, Yousafzai FK, Eady RR, Hasnain SS. Electron donation between copper containing nitrite reductases and cupredoxins: the nature of protein-protein interaction in complex formation. J Mol Biol 2002;315:859–871.

    Article  CAS  Google Scholar 

  17. Rinaldi R, Biasco A, Maruccio G, et al. Solid-state molecular rectifier based on self-organized metalloproteins. Adv Mater 2002; 14:1453–1457.

    Article  CAS  Google Scholar 

  18. Maruccio G, Biasco A, Visconti P, et al. Towards protein field-effect transistors: report and model of a prototype. Adv Mater 2005;17:816–822.

    Article  CAS  Google Scholar 

  19. Corni S, De Rienzo F, Di Felice R, Molinari E. Role of the electronic properties of Azurin active site in the electron-transfer process. Int J Quantum Chem 2005; 102:328–342.

    Article  CAS  Google Scholar 

  20. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature 2001;414:430–434.

    Article  CAS  Google Scholar 

  21. Seeman NC. Nucleic acid nanostructures and topology. Angew Chemie Int Ed 1998;37:3220–3238.

    Article  CAS  Google Scholar 

  22. Seeman NC. DNA in a material world. Nature 2003;421:427–431.

    Article  CAS  Google Scholar 

  23. Seeman NC, Belcher AM. Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci USA 2002;99:6451–6455.

    Article  CAS  Google Scholar 

  24. Mao C, Sun W, Shen Z, Seeman NC. A nanomechanical device based on the B-Z transition of DNA. Nature 1999;397:144–146.

    Article  CAS  Google Scholar 

  25. Brucale M, Zuccheri GP, SamorÌ B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 2005;3:575–577.

    Article  CAS  Google Scholar 

  26. Alberti P, Mergny JL. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc Natl Acad Sci USA 2003; 100:1569–1573.

    Article  CAS  Google Scholar 

  27. Yurke B, Turberfield AJ, Mills Jr AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature 2000;406:605–608.

    Article  CAS  Google Scholar 

  28. Fink HW, Schönenberger C. Electrical conduction through DNA molecules. Nature 1999;398:407–410.

    Article  CAS  Google Scholar 

  29. Porath D, Bezryadin A, de Vries S, Dekker C. Direct measurement of electrical transport through DNA molecules. Nature 2000;403:635–638.

    Article  CAS  Google Scholar 

  30. de Pablo PJ, Moreno-Herrero F, Colchero J, et al. Absence of conductivity in l-DNA. Phys Rev Lett 2000;85:4992–4995.

    Article  Google Scholar 

  31. Kasumov AY, Kociak M, Guéron S, et al. Proximity-induced superconductivity in DNA. Science 2001;291:280–282.

    Article  CAS  Google Scholar 

  32. Rakitin A, Aich P, Papadopoulos C, et al. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys Rev Lett 2001;86:3670–3673.

    Article  CAS  Google Scholar 

  33. Storm AJ, van Noort J, de Vries S, Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl Phys Lett 2001;79:3881–3883.

    Article  CAS  Google Scholar 

  34. Watanabe H, Manabe C, Shigematsu T, Shimotani K, Shimizu M. Single molecule DNA device measured with triple-probe atomic force microscope. Appl Phys Lett 2001;79:2462–2464.

    Article  CAS  Google Scholar 

  35. Shigematsu T, Shimotani K, Manabe C, Watanabe H, Shimizu M. Transport properties of carrier-injected DNA. J Chem Phys 2003;118:4245–4252.

    Article  CAS  Google Scholar 

  36. Berti L, Alesandrini A, Facci P. DNA-templated photoinduced silver deposition. J Am Chem Soc 2005;127:11,216–11,217.

    Article  CAS  Google Scholar 

  37. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK. Construction of highly conductive nanowires on a DNA template. Appl Phys Lett 2001;78:536–538.

    Article  CAS  Google Scholar 

  38. Porath D, Cuniberti G, Di Felice R. Charge transport in DNA-based devices. In: Schuster G, ed. Long Range Charge Transfer in DNA II. Topics in Current Chemistry, vol. 237. Berlin: Springer, 2004:183–227.

    Google Scholar 

  39. Endres RG, Cox DL, Singh RRP. Colloquium: The quest for high-conductance DNA. Rev Mod Phys 2004;76:195–214.

    Article  CAS  Google Scholar 

  40. Di Ventra M, Zwolak M. DNA Electronics. In: Singh-Nalwa H, ed. Encyclopaedia of Nanoscience and Nanotechnology, vol. 2. Stevenson Ranch: American Scientific Publishers, 2004:475–493.

    Google Scholar 

  41. O’Neill P, Fielden EM. Primary free radical processes in DNA. Adv Radiat Biol 1993;17:53–120.

    Google Scholar 

  42. Eley DD, Spivey DI. Semiconductivity of organic substances. Part 9-Nucleic acid in the dry state. Trans Faraday Soc 1962;58:416–428.

    Article  Google Scholar 

  43. Young EWA, Mantl S, Griffin PB. Silicon MOSFETs-novel materials and alternative concepts. In: Rainer W, ed. Nanoelectronics and Information Technology. Weinheim: Wiley, 2003:359–386.

    Google Scholar 

  44. Hansma HG, Hoh J. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct 1994;23:115–140.

    Article  CAS  Google Scholar 

  45. Bustamante C, Keller D. Scanning force microscopy in biology. Phys Today 1995;48:32–38.

    Article  Google Scholar 

  46. Ebert P, Szot K, Roelofs A. Scanning probe techniques. In: Rainer W, ed. Nanoelectronics and Information Technology. Weinheim: Wiley, 2003:297–320.

    Google Scholar 

  47. Bonnell D. Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, 2nd ed. New York: Wiley, 2001.

    Google Scholar 

  48. Lindsay SM, Lyubchenko YL, Tao NJ, et al. Scanning tunneling microscopy and atomic force microscopy studies of biomaterials at a liquid-solid interface. J Vac SciTechnolA 1993; 11:808–815.

    Article  CAS  Google Scholar 

  49. Weiss PS. Analytical applications of scanning tunneling microscopy. Trends Anal Chem 1994;13:61–67.

    Article  CAS  Google Scholar 

  50. Hansma HG. Surface biology of DNA by atomic force microscopy. Annu Rev Phys Chem 2001;52:71–92.

    Article  CAS  Google Scholar 

  51. Zuccheri G, SamorÌ B. SFM studies on the structure and dynamics of single DNA molecules. In: Jena B, Hoerber JA, Wilson L, Matsudaira P, eds. Atomic Force Microscopy in Cell Biology. Methods in Cell Biology, vol 68. Amsterdam: Elsevier, 2002:357–395.

    Google Scholar 

  52. Alessandrini A, Facci P. AFM: a versatile tool in biophysics. Meas Sci Technol 2005;16:R65–R92.

    Article  CAS  Google Scholar 

  53. Muir T, Morales E, Root J, et al. The morphology of duplex and quadruplex DNA on mica. J Vac Sci Technol A 1998; 16:1172–1177.

    Article  CAS  Google Scholar 

  54. Kasumov AY, Klinov DV, Roche PE, Guéron S, Bouchiat H. Thickness and low-temperature conductivity of DNA molecules. Appl Phys Lett 2004;84:1007–1009.

    Article  CAS  Google Scholar 

  55. Saenger W. Principles of Nucleic Acid Structure. Berlin: Springer, 1984.

    Google Scholar 

  56. Sinden RR. DNA Structure and Function. San Diego: Academic Press, 1994:12–14:23–25.

    Google Scholar 

  57. Kotlyar AB, Borovok N, Molotsky T, Cohen H, Shapir E, Porath D. Long monomolecular guanine-based nanowires. Adv Mater 2005; 17: 1901–1905.

    Article  CAS  Google Scholar 

  58. Vesenka J, Guthold M, Tang CL, Keller D, Delaine E. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 1992;42–44:1243–1249.

    Article  Google Scholar 

  59. Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 1992;31:22–26.

    Article  CAS  Google Scholar 

  60. Muller DJ, Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 1997;73:1633–1644.

    CAS  Google Scholar 

  61. Gómez-Navarro C, Moreno-Herrero F, de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior. Proc Natl Acad Sci USA 2002;99:8484–8487.

    Article  CAS  Google Scholar 

  62. Shapir E, Cohen H, Sapir T, Borovok N, Kotlyar AB, Porath D. High-resolution STM imaging of novel poly(dG)-poly(dC) DNA. J Phys Chem B 2006; 110:4430–4433.

    Article  CAS  Google Scholar 

  63. Kanno T, Tanaka H, Nakamura T, Tabata H, Kawai T. Real space observation of double-helix DNA structure using a low temperature scanning tunneling microscopy. Jpn J Appl Phys 1999;38:L606–L607.

    Article  CAS  Google Scholar 

  64. Wang H, Tang Z, Li Z, Wang E. Self-assembled monolayer of ssDNA on Au(111) substrate. Surf Sci Lett 2001;480:L389–L394.

    Article  CAS  Google Scholar 

  65. Tanaka H, Hamai C, Kanno T, Kawai T. High-resolution scanning tunneling microscopy imaging of DNA molecules on Cu(111) surfaces. Surf Sci Lett 1999;432:L611–L616.

    Article  CAS  Google Scholar 

  66. Ceres DM, Barton JK. In situ scanning tunneling microscopy of DNA-modified gold surfaces: bias and mismatch dependence. J Am Chem Soc 2003; 125: 14,964–14,965.

    Article  CAS  Google Scholar 

  67. Shapir E, Yi J, Cohen H, Kotlyar AB, Cuniberti G, Porath D. The puzzle of contrast inversion in DNA STM imaging. J Phys Chem B 2005; 109: 14,270–14,274.

    Article  CAS  Google Scholar 

  68. Lindsay SM, Li Y, Pan J, et al. Studies of the electrical properties of large molecular adsorbates. J Vac Sci Technol 1991;9:1096–1101.

    Article  CAS  Google Scholar 

  69. Iijima M, Kato T, Nakanishi S, et al. STM/STS study of electron density of states at the bases sites in the DNA alternating copolymers. Chem Lett 2005;34: 1084–1085.

    Article  CAS  Google Scholar 

  70. Xu MS, Endres RG, Tsukamoto S, Kitamura M, Ishida S, Arakawa Y. Conformation and local environment dependent conductance of DNA molecules. Small 2005; 1:1–4.

    Article  Google Scholar 

  71. Xu MS, Tsukamoto S, Ishida S, et al. Conductance of single thiolated poly(GC)-poly(GC) DNA molecules. Appl Phys Lett 2005;87:083902-1/3.

    Google Scholar 

  72. Kotlyar AB, Borovok N, Molotsky T, Fadeev L, Gozin M. In vitro synthesis of uniform poly(dG)-poly(dC) by Klenow exofragment of polymerase I. Nucl Acid Res 2005;33:525–535.

    Article  CAS  Google Scholar 

  73. Cohen H, Nogues C, Naaman R, Porath D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc Natl Acad Sci USA 2005; 102:11,589–11,593.

    Article  CAS  Google Scholar 

  74. Xu B, Zhang P, Li X, Tao N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett 2004;4:1105–1108.

    Article  CAS  Google Scholar 

  75. Omerzu A, Licer M, Mertelj T, Kabanov VV, Mihailovic D. Hole interactions with molecular vibrations on DNA. Phys Rev Lett 2004;93:218101-1/4.

    Google Scholar 

  76. Cui XD, Primak A, Zarate X, et al. Reproducible measurement of single-molecule conductivity. Science 2001;294:571–574.

    Article  CAS  Google Scholar 

  77. Van Zalinge H, Schiffrin DJ, Bates AD, Haiss W, Ulstrup J, Nichols RJ. Measurement of single-and double-stranded DNA oligonucleotides. Chemphyschem 2006;7:94–98.

    Article  CAS  Google Scholar 

  78. Nogues C, Cohen SR, Daube SS, Naaman R. Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy. Phys Chem Chem Phys 2004;6:4459–4466.

    Article  CAS  Google Scholar 

  79. Di Felice R, Selloni A. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. J Chem Phys 2004;120:4906–4914.

    Article  CAS  Google Scholar 

  80. Cohen H, Nogues C, Ullien D, Daube S, Naaman R, Porath D. Electrical characterization of self-assembled single-and double-stranded DNA monolayers using conductive AFM. Faraday Disc 2006; 131:367–376.

    Article  CAS  Google Scholar 

  81. Gómez-Navarro C, Gil A, álvarez M, et al. Scanning force microscopy three-dimensional modes applied to the study of the dielectric response of adsorbed DNA molecules. Nanotechnology 2002;13:314–317.

    Article  Google Scholar 

  82. Porath D, Lapidot N, Gomez-Herrero J. Charge transport in DNA-based devices. In: Cuniberti G, Fagas G, Richter K, eds. Introducing Molecular Electronics. Lecture Notes in Physics, vol. 680. Heidelberg: Springer, 2005:411–439.

    Chapter  Google Scholar 

  83. Odom DT, Barton JK. Long range oxidative damage in DNA/RNA duplexes. Biochemistry 2001;40:8727–8737.

    Article  CAS  Google Scholar 

  84. Hall DB, Holmlin RE, Barton JK. Oxidative DNA damage through long range electron transfer. Nature 1996;382:731–734.

    Article  CAS  Google Scholar 

  85. Meggers E, Michel-Beyerle ME, Giese B. Sequence dependent long range hole transport in DNA. J Am Chem Soc 1998; 120:12,950–12,955.

    Article  CAS  Google Scholar 

  86. Wagenknecht H-A. Charge Transfer in DNA. From Mechanism to Application. Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  87. Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J. Long-range charge hopping in DNA. Proc Natl Acad Sci USA 1999;96: 11,713–11,716.

    Article  CAS  Google Scholar 

  88. Voityuk AA, Rösch N, Bixon M, Jortner J. Electronic coupling for charge transfer and transport in DNA. J Phys Chem B 2000; 104:9740–9745.

    Article  CAS  Google Scholar 

  89. Voityuk AA, Jortner J, Bixon M, Rösch. Electronic coupling between Watson-Crick pairs for hole transfer and transport in deoxyribonucleic acid. J Chem Phys 2001;114:5614–5620.

    Article  CAS  Google Scholar 

  90. Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta 1985;811:265–322.

    CAS  Google Scholar 

  91. Bixon M, Jortner J. Electron transfer-from isolated molecules to biomolecules. Adv Chem Phys 1999; 106:35–202.

    Article  CAS  Google Scholar 

  92. Giese B. Hole injection and hole transfer through DNA. The hopping mechanism. In: Schuster G, ed. Long Range Charge Transfer in DNA II. Topics in Current Chemistry, vol. 236. Berlin: Springer, 2004:27–44.

    Google Scholar 

  93. Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 2001;412:318–320.

    Article  CAS  Google Scholar 

  94. Behrens C, Cichon MK, Grolle F, Hennecke U, Carell T. Excess electron transfer in defined donor-nucleobase and donor-DNA-acceptor systems. In: Schuster G, ed. Long Range Charge Transfer in DNA II. Topics in Current Chemistry, vol. 236. Berlin: Springer, 2004:187–215.

    Google Scholar 

  95. Rösch N, Voityuk AA. Quantum chemical calculation of donor-acceptor coupling for charge transfer in DNA. In: Schuster G, ed. Long Range Charge Transfer in DNA II. Topics in Current Chemistry, vol. 237. Berlin: Springer, 2004:37–72.

    Google Scholar 

  96. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle M. Charge transfer and transport in DNA. Proc Natl Acad Sci USA 1998;95:12,759–12,765.

    Article  CAS  Google Scholar 

  97. Bixon M, Jortner J. Incoherent charge hopping and conduction in DNA and long molecular chains. Chem Phys 2005;319:273–282.

    Article  CAS  Google Scholar 

  98. Gervasio FL, Carloni P, Parrinello M. Electronic structure of wet DNA. Phys Rev Lett 2002;89:108102.

    Article  CAS  Google Scholar 

  99. Gervasio FL, Laio A, Parrinello M, Boero M. Charge localization in DNA fibers. Phys Rev Lett 2005;94:158103-1/4.

    Google Scholar 

  100. Artacho E, Machado M, Sánchez-Portal D, Ordejón P, Soler JM. Electrons in dry DNA from density functional calculations. Mol Phys 2003;101:1587–1594.

    Article  CAS  Google Scholar 

  101. Di Felice R, Calzolari A. Electronic structure of DNA derivatives and mimics by density functional theory. In: Starikov E, Lewis JP, Tanaka S, eds. Modern Methods for Theoretical Physical Chemistry of Biopolymers. Amsterdam: Elsevier, 2006:485–507.

    Google Scholar 

  102. Fusch EC, Lippert BJ. [Zn3(OH)2(1-MeC-N3)5(1-MeC-O2)3]4+ (1-MeC = 1-Methylcytosine): structural model for DNA crosslinking and DNA rewinding by Zn(II)? J Am Chem Soc 1994; 116:7204–7209.

    Article  CAS  Google Scholar 

  103. Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M. A discrete self-assembled metal array in artificial DNA. Science 2003;299:1212–1213.

    Article  CAS  Google Scholar 

  104. Liu H, Gao J, Lynch SR, Saito YD, Maynard L, Kool E. A four-base paired genetic helix with expanded size. Science 2003;302:868–871.

    Article  CAS  Google Scholar 

  105. Gao J, Liu H, Kool ET. Assembly of the complete eight-base genetic helix, xDNA, and its interaction with the natural genetic system. Angew Chemie Int Ed 2005;44:3118–3122.

    Article  CAS  Google Scholar 

  106. Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 å resolution. J Mol Biol 1997;273:171–182.

    Article  CAS  Google Scholar 

  107. Gottarelli G, Spada GP, Garbesi A. Self-assembled columnar mesophases based on guanine-related molecules. In: Atwood JL, Davies JED, MacNicol D, Vögtle FV, eds. Comprehensive Supramolecular Chemistry, vol 9. Oxford: Pergamon, 1996:483–506.

    Google Scholar 

  108. Laughlan G, Murchie AIH, Norman DG, et al. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 1994;265:520–524.

    Article  CAS  Google Scholar 

  109. Davis GT. G-quartes 40 years later: from 5?-GMP to molecular biology and supramolecular chemistry. Angew Chemie Int Ed 2004;43:668–698.

    Article  CAS  Google Scholar 

  110. Calzolari A, Di Felice R, Molinari E, Garbesi A. Electron channels in biomolecular nanowires. J Phys Chem B 2004; 108:2509–2515; ibid. 13058.

    Article  CAS  Google Scholar 

  111. Di Felice R, Calzolari A, Zhang H. Towards metalated DNA-based structures. Nanotechnology 2004; 15:1256–1263.

    Article  CAS  Google Scholar 

  112. Di Felice R, Calzolari A, Molinari E, Garbesi A. Ab initio study of model guanine assemblies: the role of π-π coupling and band transport. Phys Rev B 2000; 65:045104-1/10.

    Google Scholar 

  113. Cohen H, Shapir T, Borovok N, et al. Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Letters 2007;7:981–986.

    Article  CAS  Google Scholar 

  114. Calzolari A, Di Felice R, Molinari E, Garbesi A. G-quartet biomolecular nanowires. Appl Phys Lett 2002;80:3331–3333.

    Article  CAS  Google Scholar 

  115. Di Felice R, Calzolari A, Garbesi A, Alexandre SS, Soler JM. Strain-dependence of the electronic properties in periodic quadruple helical G4-wires. J Phys Chem B 2005;109:22,301–22,307.

    Article  CAS  Google Scholar 

  116. Kittel C. Introduction to Solid State Physics, 6th ed. New York: Wiley, 1986.

    Google Scholar 

  117. Spacková N, Berger I, Sponer J. Nanosecond molecular dynamics simulations of parallel and antiparallel guanine quadruplex DNA molecules. J Am ChemSoc 1999;121:5519–5534.

    Article  Google Scholar 

  118. Stefl R, Spacková N, Berger I, Koca J, Sponer J. Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine. Biophys J 2001;80:455–461.

    Article  CAS  Google Scholar 

  119. Cavallari M, Calzolari A, Garbesi A, Di Felice R. Stability and migration of metal ions in G4-Wires by molecular dynamics simulations. J Phys Chem B 2006; 110:26,337–26,348.

    Article  CAS  Google Scholar 

  120. Xu Q, Deng H, Braunlin W. Selective localization and rotational immobilization of univalent cations on quadruplex DNA. Biochemistry 1993;32:13,130–13,137.

    Article  CAS  Google Scholar 

  121. Mergny JL, Phan AT, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett 1998;435:74–78.

    Article  CAS  Google Scholar 

  122. Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. Biophysical and biological properties of quadruplex oligodeoxyri-bonucleotides. Nucl Acids Res 2003;31:2097–2107.

    Article  CAS  Google Scholar 

  123. Marsh TC, Henderson E. G-wires: self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry 1994;33:10,718–10,724.

    Article  CAS  Google Scholar 

  124. Forman SL, Fettinger JC, Pieraccini S, Gottarelli G, Davis JT. Toward artificial ion channels: a lipophilic G-quadruplex. J Am Chem Soc 2000; 122:4060–4067.

    Article  CAS  Google Scholar 

  125. Alexandre SS, Soler JM. Private communication.

    Google Scholar 

  126. O’Neill BM, Ratto JE, Good KL, Tahmassebi DC, Helquist SA, Morales JC, Kool ET. A highly effective nonpolar isostere of deoxyguanosine: synthesis, structure, stacking, and base pairing. J Org Chem 2002;67:5869–5875.

    Article  CAS  Google Scholar 

  127. Zhang HY, Calzolari A, Di Felice R. On the magnetic alignment of metal ions in a DNA-mimic double helix, J Phys Chem B 2005; 109:15,345–15,348.

    Article  CAS  Google Scholar 

  128. Kool ET. Replacing the nucleobases in DNA with designer molecules. Acc Chem Res 2002;35:936–943.

    Article  CAS  Google Scholar 

  129. Liu H, Gao J, Saito YD, Maynard L, Kool ET. Toward a new genetic system with expanded dimensions: size-expanded analogues of deoxyadenosine and thymine. J Am Chem Soc 2004;126:1102–1109.

    Article  CAS  Google Scholar 

  130. Liu H, Lynch SR, Kool ET. Solution structure of xDNA: a paired genetic helix with increased diameter. J Am Chem Soc 2004; 126:6900–6905.

    Article  CAS  Google Scholar 

  131. Gao J, Liu H, Kool ET. Expanded-size bases in naturally sized DNA: evaluation of steric effects in Watson-Crick pairing. J Am Chem Soc 2004; 126: 11,826–11,831.

    Article  CAS  Google Scholar 

  132. Liu H, Gao J, Kool ET. Helix-forming properties of size-expanded DNA, an alternative four-base genetic form. J Am Chem Soc 2005;127:1396–1402.

    Article  CAS  Google Scholar 

  133. Lee AHF, Kool ET. A new four-base helix, yDNA, composed of widened benzopyrimidine-purine pairs. J Am Chem Soc 2005; 127:3332–3338.

    Article  CAS  Google Scholar 

  134. Piccirilli JA, Krauch T, Moroney SE, Brenner SA. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990;343:33–37.

    Article  CAS  Google Scholar 

  135. Rappaport HP. The 6-thioguanine/5-methyl-2pyrimidinone base pair. Nucl Acid Res 1988; 16:7253–7267.

    Article  CAS  Google Scholar 

  136. McMinn DL, Ogawa AK, Wu YQ, Liu JQ, Schultz PG, Romesberg FE. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J Am Chem Soc 1999;126:11,585–11,586.

    Article  CAS  Google Scholar 

  137. Tae EL, Wu Y, Xia G, Schultz PG, Romesberg FE. Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. J Am Chem Soc 2001; 123:7439–7440.

    Article  CAS  Google Scholar 

  138. Migliore A, Varsano D, Corni S, Di Felice R. Electron transfer rates in natural and expanded DNA base pairs. Work in progress.

    Google Scholar 

  139. Weizman H, Tor Y. 2,2?-Bypyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes. J Am Chem Soc 2001; 123:3375–3376.

    Article  CAS  Google Scholar 

  140. Meggers E, Holland PL, Tolman WB, Romesberg FE, Schultz PG. A novel copper-mediated DNA base pair. J Am Chem Soc 2000;122: 10,714–10,715.

    Article  CAS  Google Scholar 

  141. Zhang L, Meggers E. An extremely stable and orthogonal DNA base pair with a simplified three-carbon backbone. J Am Chem Soc 2005; 127: 74–75.

    Article  CAS  Google Scholar 

  142. Clever GH, Polborn K, Carell T. A highly DNA-duplex-stabilizing metalsalen base pair. Angew Chem Int Ed 2005;44:7204–7208.

    Article  CAS  Google Scholar 

  143. Switzer C, Sinha S, Kim PH, Heuberger BD. A purine-like nickel(II) base pair for DNA. Angew Chem Int Ed 2005;44:1529–1532.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Di Felice, R., Porath, D. (2008). DNA-Based Nanoelectronics. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_8

Download citation

Publish with us

Policies and ethics