Skip to main content

Bionanotechnology and Bionanoscience of Artificial Bioassemblies

  • Chapter
NanoBioTechnology

Abstract

Bionanotechnology is now creating an entire class of new devices that will improve and augment existing approaches to biology and medicine. Information from physics, chemistry, and molecular biology is being used to reassemble biological and nonbiological molecules into useful and informative devices. These artificial bioassemblies are generally built on nanoscale scaffolds. This flexible construction principle allows them to serve as models of cellular assemblies, models of possible intermediates in molecular evolution, reporters for studying intracellular dynamics, and tools for detecting and tagging different cell types, including cancer cells. This chapter assesses recent progress in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lammers U, Borstel G. Electronic and atomic structure of copper clusters. Phys Rev B. Condensed Matter 1994; 49:17,360–17,377.

    Google Scholar 

  2. Thoai DB, Hu YZ, Koch SW. Influence of the confinement potential on the electron-hole-pair states in semiconductor microcrystallites. Phys Rev B. Condensed Matter 1990; 42:11,261–11,266.

    Google Scholar 

  3. Franceschetti A, Zunger A. Quantum-confinement-induced Gamma — > X transition in GaAs/AlGaAs quantum films, wires, and dots. Phys Rev B. Condensed Matter 1995; 52:14,664–14,670.

    CAS  Google Scholar 

  4. Wang LW, Zunger A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys Rev B. Condensed Matter 1996; 53:9579–9582.

    CAS  Google Scholar 

  5. Nirmal M, Dabbousi BO, Bawendi MG, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996; 383:802–804.

    Article  CAS  Google Scholar 

  6. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281:2016–2018.

    Article  CAS  Google Scholar 

  7. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997; 101:9463–9475.

    Article  CAS  Google Scholar 

  8. Weber MH, Lynn KG, Barbiellini B, Sterne PA, Denison AB. Direct observation of energy-gap scaling law in CdSe quantum dots with positrons. Phys Rev B 2002; 66:041301–041305.

    Article  CAS  Google Scholar 

  9. Pinaud F, King D, Moore HP, Weiss S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004;126:6115–6123.

    Article  CAS  Google Scholar 

  10. Lidke DS, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22:198–203.

    Article  CAS  Google Scholar 

  11. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22:969–976.

    Article  CAS  Google Scholar 

  12. Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21:41–46.

    Article  CAS  Google Scholar 

  13. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21:47–51.

    Article  CAS  Google Scholar 

  14. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99:12,617–12,621.

    Article  CAS  Google Scholar 

  15. Winter JOL, Korgel BA, Schmidt CE. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials 2001; 13:1673–1677.

    Article  CAS  Google Scholar 

  16. Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001; 123: 4103–4104.

    Article  CAS  Google Scholar 

  17. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucl Acids Res 2004; 32:e28.

    Article  CAS  Google Scholar 

  18. Striebel HM, Birch-Hirschfeld E, Egerer R, Foldes-Papp Z, Tilz GP, Stelzner A. Enhancing sensitivity of human herpes virus diagnosis with DNA microarrays using dendrimers. Exp Mol Pathol 2004; 77:89–97.

    Article  CAS  Google Scholar 

  19. Woller EK, Cloninger MJ. Mannose functionalization of a sixth generation dendrimer. Biomacromolecules 2001; 2:1052–1054.

    Article  CAS  Google Scholar 

  20. Shukla S, Wu G, Chatterjee M, et al. Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug Chem 2003; 14:158–167.

    Article  CAS  Google Scholar 

  21. Choi Y, Thomas T, Kotlyar A, Islam MT, Baker JR Jr. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 2005; 12:35–43.

    Article  CAS  Google Scholar 

  22. Ballauff M, Likos CN. Dendrimers in solution: insight from theory and simulation. Angew Chem Int Ed Engl 2004; 43:2998–3020.

    Article  CAS  Google Scholar 

  23. Mecke A, Lee I Jr, Holl MM, Orr BG. Deformability of poly(amidoamine) dendrimers. Eur Phys J E Soft Matter 2004; 14:7–16.

    Article  CAS  Google Scholar 

  24. Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 2000; 4:696–703.

    Article  CAS  Google Scholar 

  25. Dower SK, DeLisi C, Titus JA, Segal DM. Mechanism of binding of multivalent immune complexes to Fc receptors. 1. Equilibrium binding. Biochemistry 1981; 20:6326–6334.

    Article  CAS  Google Scholar 

  26. Dower SK, Titus JA, DeLisi C, Segal DM. Mechanism of binding of multivalent immune complexes to Fc receptors. 2. Kinetics of binding. Biochemistry 1981; 20: 6335–6340.

    Article  CAS  Google Scholar 

  27. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991; 88: 7276–7280.

    Article  CAS  Google Scholar 

  28. Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucl Acids Res 1993; 21:3761–3766.

    Article  CAS  Google Scholar 

  29. Förster T. Delocalized excitation and excitation transfer. In: Sinanoglu O, ed. Modern Quantum Chemistry, vol. 3. New York: Academic Press, 1965:93–137.

    Google Scholar 

  30. Bonetta L. Prime time for real-time PCR. Nat Meth 2005; 2:305–312.

    Article  CAS  Google Scholar 

  31. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 1996; 14:303–308.

    Article  CAS  Google Scholar 

  32. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 1998; 16:359–363.

    Article  CAS  Google Scholar 

  33. Lyamichev V, Brow MA, Varvel VE, Dahlberg JE. Comparison of the 5′ nuclease activities of taq DNA polymerase and its isolated nuclease domain. Proc Natl Acad Sci USA 1999; 96:6143–6148.

    Article  CAS  Google Scholar 

  34. Tapp I, Malmberg L, Rennel E, Wik M, Syvanen AC. Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 2000; 28:732–738.

    CAS  Google Scholar 

  35. Tan W, Wang K, Drake TJ. Molecular beacons. Curr Opin Chem Biol 2004; 8:547–553.

    Article  CAS  Google Scholar 

  36. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature 2000; 406:605–608.

    Article  CAS  Google Scholar 

  37. Yan H, Zhang X, Shen Z, Seeman NC. A robust DNA mechanical device controlled by hybridization topology. Nature 2002; 415:62–65.

    Article  CAS  Google Scholar 

  38. Alberti P, Mergny JL. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc Natl Acad Sci USA 2003; 100:1569–1573.

    Article  CAS  Google Scholar 

  39. Sueda S, Ihara T, Takagi M. Metallo-regulation of DNA triple helix formation through cooperative dimerization of two oligonucleotides. Chem Lett 1997; 26:1085–1086.

    Article  Google Scholar 

  40. Matsumura K, Endo M, Komiyama M. Lanthanide complex-oligo-DNA hybrid for sequence-selective hydrolysis of RNA. J Chem Soc, Chem Commun 1994; 1994:2019–2020.

    Google Scholar 

  41. Horsey I, Krishnan-Ghosh Y, Balasubramanian S. Enhanced cooperative binding of oligonucleotides to form DNA duplexes mediated by metal ion chelation. Chem Commun 2002; 2002:1950–1961.

    Google Scholar 

  42. Endo M, Komiyama M. Novel phosphoramidite monomer for the site-selective incorporation of a diastereochemically pure phosphoramidate to oligonucleotide. J Org Chem 1996; 61:1994–2000.

    Article  CAS  Google Scholar 

  43. Baliga R, Singleton JW, Dervan PB. RecA oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc Natl Acad Sci USA 1995; 92:10,393–10,397.

    Article  CAS  Google Scholar 

  44. Han H, Dervan PB. Different conformational families of pyrimidine purine pyrimidine triple helices depending on backbone composition. Nucl Acids Res 1994; 22:2837–2844.

    Article  CAS  Google Scholar 

  45. Dreyer GB, Dervan PB. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA Fe(II). Proc Natl Acad Sci USA 1985; 82:968–972.

    Article  CAS  Google Scholar 

  46. Moser HE, Dervan PB. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 1987; 238:645–650.

    Article  CAS  Google Scholar 

  47. Strobel SA, Dervan PB. Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 1990; 249:73–75.

    Article  CAS  Google Scholar 

  48. Meredith GD, Wu HY, Allbritton NL. Targeted protein functionalization using His-tags. Bioconjug Chem 2004; 15:969–982.

    Article  CAS  Google Scholar 

  49. Churchill ME, Tullius TD, Kallenbach NR, Seeman NC. A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci USA 1988; 85:4653–4656.

    Article  CAS  Google Scholar 

  50. Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of twodimensional DNA crystals. Nature 1998; 394:539–544.

    Article  CAS  Google Scholar 

  51. Marky LA, Kallenbach NR, McDonough KA, Seeman NC, Breslauer KJ. The melting behavior of a DNA junction structure: a calorimetric and spectroscopic study. Biopolymers 1987; 26:1621–1634.

    Article  CAS  Google Scholar 

  52. Wang YL, Mueller JE, Kemper B, Seeman NC. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry 1991; 30:5667–5674.

    Article  CAS  Google Scholar 

  53. Chen JH, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 1991; 350:631–633.

    Article  CAS  Google Scholar 

  54. Zhang Y, Seeman NC. The construction of a DNA truncated octahedron. J Am ChemSoc 1994; 116:1661–1669.

    Article  CAS  Google Scholar 

  55. Shih WM, Quispe JD, Joyce GF. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 2004; 427:618–621.

    Article  CAS  Google Scholar 

  56. Mao C, Sun W, Seeman NC. Assembly of Borromean rings from DNA. Nature 1997; 386:137–138.

    Article  CAS  Google Scholar 

  57. Mao C, Sun W, Shen Z, Seeman NC. A nanomechanical device based on the B-Z transition of DNA. Nature 1999; 397:144–146.

    Article  CAS  Google Scholar 

  58. Gibson TJ, Lamond AI. Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J Mol Evol 1990; 30:7–15.

    Article  CAS  Google Scholar 

  59. Niemeyer CM, Sano T, Smith CL, Cantor CR. Oligonucleotide-directed selfassembly of proteins: semisynthetic DNA-streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucl Acids Res 1994; 22:5530–5539.

    Article  CAS  Google Scholar 

  60. Niemeyer CM, Koehler J, Wuerdemann C. DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem 2002; 3:242–245.

    Article  CAS  Google Scholar 

  61. Meredith GD, Wu HY, Allbritton NL. Targeted protein functionalization using his-tags. Bioconjug Chem 2004; 15:969–982.

    Article  CAS  Google Scholar 

  62. Smith SS, Niu L, Baker DJ, Wendel JA, Kane SE, Joy DS. Nucleoproteinbased nanoscale assembly. Proc Natl Acad Sci USA 1997; 94:2162–2167.

    Article  CAS  Google Scholar 

  63. Smith SS. A self-assembling nanoscale camshaft: implications for nanoscale materials and devices constructed from proteins and nucleic acids. Nano Lett 2001; 1:51–56.

    Article  CAS  Google Scholar 

  64. Clark J, Shevchuk T, Swiderski PM, et al. Mobility-shift analysis with microfluidics chips. Biotechniques 2003; 35:548–554.

    CAS  Google Scholar 

  65. Smith SS. Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNa methyltransferase to order proteins on nucleic acid scaffolds. Nanotechnology 2002; 13:413–419.

    Article  CAS  Google Scholar 

  66. Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Pluckthun A. Design of multivalent complexes using the barnase*barstar module. Nat Biotechnol 2003; 21:1486–1492.

    Article  CAS  Google Scholar 

  67. Padilla JE, Colovos C, Yeates TO. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci USA 2001; 98:2217–2221.

    Article  CAS  Google Scholar 

  68. Ringler P, Schulz GE. Self-assembly of proteins into designed networks. Science 2003; 302:106–109.

    Article  CAS  Google Scholar 

  69. Moll D, Huber C, Schlegel B, Pum D, Sleytr UB, Sara M. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci USA 2002; 99:14,646–14,651.

    Article  CAS  Google Scholar 

  70. Kipriyanov SM, Little M, Kropshofer H, Breitling F, Gotter S, Dubel S. Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Protein Eng 1996; 9:203–211.

    Article  CAS  Google Scholar 

  71. Caspar DL, Klug A. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp Quant Biol 1962; 27:1–24.

    CAS  Google Scholar 

  72. Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R. Viral selfassembly as a thermodynamic process. Phys Rev Lett 2003; 90:248101.

    Article  CAS  Google Scholar 

  73. Zandi R, Reguera D, Bruinsma RF, Gelbart WM, Rudnick J. Origin of icosahedral symmetry in viruses. Proc Natl Acad Sci USA 2004; 101:15,556–15,560.

    Article  CAS  Google Scholar 

  74. Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn MG. Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chem Biol 2002; 9:805–811.

    Article  CAS  Google Scholar 

  75. Wang Q, Lin T, Johnson JE, Finn MG. Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. Chem Biol 2002; 9:813–819.

    Article  CAS  Google Scholar 

  76. Cheung CL, Camarero JA, Woods BW, Lin T, Johnson JE, De Yoreo JJ. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 2003; 125:6848–6849.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Smith, S.S., Lamparska-Kupsik, K. (2008). Bionanotechnology and Bionanoscience of Artificial Bioassemblies. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_3

Download citation

Publish with us

Policies and ethics