Skip to main content

Water-Based Nanotechnology

What if We Could Dope Water?

  • Chapter
NanoBioTechnology
  • 2204 Accesses

Abstract

For many years, scientists around the world have studied water, the basis of all life on our planet. Expecting to reach disruptive benefits similar to the huge value created by doping silicon and glass fibers, some scientists have been relentlessly searching for ways to dope water and bring about a quantum leap in life sciences similar to those seen in microelectronics and communications. Although early failures such as the now infamous “polywater” discovery discouraged and disappointed some in the scientific community, these temporary setbacks have not halted the effort. The quest to dope water and to create a revolutionary material upon which to base a new generation of aqueous material useful for therapeutics has continued unabated. Recent developments in nanotechnology, which focuses on materials at their nanometer scale, are enabling scientists to experiment with and understand a new class of water-based nanotechnology materials that are poised to become the first generation of “dopedwater” materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenberg D, Kauzmann W. The structure and properties of water. London, Oxford University Press, 1969.

    Google Scholar 

  2. Pauling L. The structure of water. In: Hadzi D, Thompson HW, eds. Hydrogen Bonding. London, Pergamon Press Ltd: 1959; pp 1–6.

    Google Scholar 

  3. Kropman MF, Bakker HJ. Dynamics of water molecules in aqueous solvantion shells. Science 2001;291:2118–2120.

    Article  CAS  Google Scholar 

  4. Stanley HE, Teixeira J. Interpretation of the unusual behavior of H2O and D2O at low temperature: tests of a percolation model. J Chem Phys 1980;73: 3404–3422.

    Article  CAS  Google Scholar 

  5. Dore JC. Hydrogen-bond networks in supercooled liquid water and amorphous vitreous ices. J Mol Struct 1990;237:221–232.

    Article  CAS  Google Scholar 

  6. Luck WAP. The importance of cooperativity for the properties of liquid water. J Mol Struct 1998;448:131–142.

    Article  CAS  Google Scholar 

  7. Khan A. A liquid water model: Density variation from supercooling to superheating states, prediction pf H-bonds, and temperature limits. J Phys Chem 2000;104:11,268–11,274.

    CAS  Google Scholar 

  8. Cho CH, Singh S, Robinson GW. Understanding all of water’s anomalies with a nonlocal potential. J Chem Phys 1997;107:7979–7988.

    Article  CAS  Google Scholar 

  9. Tanaka H, Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys Rev Lett. 1998;80:5750–5753.

    Article  CAS  Google Scholar 

  10. Sobott F, Wattenberg A, Barth HD, Brutschy B. Ionic clathrates from aqueous solutions detected with laser induced liquid beam ionization/desorption mass spectrometry. Int J Mass Spectr 1999;185–7:271–279.

    Article  Google Scholar 

  11. Graziano G. On the size dependence of hydrophobic hydration. J Chem Soc Faraday Trans 1998;94:3345–3352.

    Article  CAS  Google Scholar 

  12. Chaplin MF. A proposal for the structuring of water. Biophys Chem 2000;-83:211–221.

    Article  CAS  Google Scholar 

  13. Müller A, Bögge H, Diemann E. Structure of a cavity-encapsulated nanodrop of water. Inorg Chem Commun 2003;6:52–53.

    Article  Google Scholar 

  14. Hodge IM. Strong and fragile liquids—a brief critique. J Non-Cryst Solids 1996;202:164–172.

    Article  CAS  Google Scholar 

  15. Tanaka H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example. J Phys: Condens Matter 2003;15: L703–L711.

    Article  CAS  Google Scholar 

  16. Franks F. Protein stability: the value of ‘old literature.’ Biophys Chem 2002;-96:117–127.

    Article  CAS  Google Scholar 

  17. Parsegian VA. Protein-water interactions. Int Rev Cytology 2002;215:1–31.

    Article  CAS  Google Scholar 

  18. Berenden HJC. Discussion. Phil Trans R Soc Lond B 2004;359:1266–1267.

    Google Scholar 

  19. Ling GN. Life at the cell and below-cell level. The hidden history of a functional revolution in Biology. New York, Pacific Press: 2001.

    Google Scholar 

  20. Ling GN. A convergence of experimental and theoretical breakthroughs affirms the PM theory of dynamically structured cell water on the theory’s 40th birthday. In: Pollack GH, Cameron IL, Wheatley DN, eds. Water and the Cell. Dordrecht, Springer: 2006; pp 1–52.

    Chapter  Google Scholar 

  21. Pollack GH. Cells, gels and the engines of life; a new unifying approach to cell function. Washington, Ebner and Sons Publishers: 2001.

    Google Scholar 

  22. Bandyopadhyay S, Chakraborty S, Balasubramanian S, Bagchi B. Sensitivity of polar solvation dynamics to the secondary structures of aqueous proteins and the role of surface exposure of the probe. J Am Chem Soc 2005;127: 4071–4075.

    Article  CAS  Google Scholar 

  23. Bandyopadhyay S, Chakraborty S, Bagchi B. Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J Am Chem Soc 2005;127:16,660–16,667.

    Article  CAS  Google Scholar 

  24. Kurkal V, Daniel RM, Finney J, Tehei M, Dunn RV, Smith JC. Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study. Chem Phys 2005;317:267–273.

    Article  CAS  Google Scholar 

  25. Barbour LJ, Orr GW, and Atwood JL. An intermolecular (H2O)10 cluster in a solid-state supramolecular complex. Nature 1998;393:671–673.

    Article  CAS  Google Scholar 

  26. Atwood L, Barbour LJ, Ness TJ, Raston CL, Raston PL. A well-resolved ice-like (H2O)8 cluster in an organic supramolecular complex. J Am Chem Soc 2001;123:7192–7193.

    Article  CAS  Google Scholar 

  27. Murrell JN, Jenkins AD. Properties of Liquids and solutions, 2nd Ed. Chichester, John Wiley & Sons: 1994.

    Google Scholar 

  28. Cho CH, Urquidi J, Singh S, Wilse Robinson G. Thermal offset viscosities of liquid H2O, D2O, and T2O. J Phys Chem B 1999;103:1991–1994.

    Article  CAS  Google Scholar 

  29. Doye JPK, Wales DJ. Polytetrahedral clusters. Phys Rev Lett 2001;86: 5719–5722.

    Article  CAS  Google Scholar 

  30. Atwood L, Barbour LJ, Ness TJ, Raston CL, Raston PL. A well-resolved ice-like (H2O)8 cluster in an organic supramolecular complex. J Am Chem Soc 2001;123:7192–7193.

    Article  CAS  Google Scholar 

  31. Hajdu F. A model of liquid water Tetragonal clusters: description and determination of parameters. Acta Chim 1977;93:371–394.

    CAS  Google Scholar 

  32. Tanaka H. Simple physical model of liquid water. J Chem Phys 2000;112: 799–809.

    Article  CAS  Google Scholar 

  33. Kell GS. Density, thermal expansivity, and compressibility of liquid water from 0‡ to 150‡C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J Chem Eng Data 1975;20: 97–105.

    Article  CAS  Google Scholar 

  34. Angell CA, Bressel RD, Hemmati M, Sare EJ, Tucker JC. Water and its anomalies in perspective: tetrahedral liquids with and without liquid-liquid phase transitions. Phys Chem Chem Phys 2000;2:1559–1566.

    Article  CAS  Google Scholar 

  35. Bartolo D, Long D, Fournier JB. Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents. Europhys Lett 2000;49:729–734.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kage, A., Gabbai, E. (2008). Water-Based Nanotechnology. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_19

Download citation

Publish with us

Policies and ethics