Skip to main content

Self-Assembly of Short Peptides for Nanotechnological Applications

  • Chapter

Abstract

The self-association of molecules to form nanoscale assemblies is a key element in “bottom-up” nanotechnological design. Biomolecules represent a unique case of self-assembling modules because of their inherent biological specificity. Such specificity can mediate precise molecular recognition processes that lead to the formation of well ordered nanoscale structures from very simple building blocks. Furthermore, the biochemical nature of the biomolecules facilitates a variety of chemical and biological modifications that allow the formation of highly functional self-assembled material. In this review, we will focus on the properties of natural and designed self-associating short peptide fragments. This class of biomolecules is of special interest as a result of its large chemical diversity, small size, biocompatibility, and simple synthesis in large amounts. The peptides may contain any of the natural amino acids but also hundreds of nonnatural ones, which results in matchless chemical diversity and remarkable molecular properties. The rationale of the selection and design of the peptides, as well as the mechanism of molecular recognition and self-assembly that includes hydrophobic, electrostatic, and aromatic interactions, are described. Moreover, specific applications that include biomaterial fabrication, cell-support scaffold preparation, biomineralization, and bio-inorganic patterning and composite formation are reviewed. Finally, future prospects for the use of peptide-based nanoscale assemblies are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang KL. Issues of nanoelectronics: a possible roadmap. J Nanosci Nanotechnol 2002;2:235–266.

    Article  CAS  Google Scholar 

  2. Whitesides GM, Christopher Love J. The art of building small. Sci Am 2001;285:38–47.

    Article  CAS  Google Scholar 

  3. Maboudian R, Carraro C. Surface chemistry and tribology of MEMS. Annu Rev Phys Chem 2004;55:35–54.

    Article  CAS  Google Scholar 

  4. Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS. Applications of carbon nanotubes in the twenty-first century. Philos Transact A Math Phys Eng Sci 2004;362:2223–2238.

    Article  CAS  Google Scholar 

  5. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.

    Article  CAS  Google Scholar 

  6. Chaki NK, Vijayamohanan K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectron 2002;17:1–12.

    Article  CAS  Google Scholar 

  7. Drexler KE. Molecular nanomachines: physical principles and implementation strategies. Annu Rev Biophys Biomol Struct. 1994;23:377–405.

    Article  CAS  Google Scholar 

  8. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Molecular nanomachines: physical principles and implementation strategies. Nature 1993 Nov 25;366(6453):324–327.

    Article  CAS  Google Scholar 

  9. Ghadiri MR, Granja JR, Buehler LK. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 1994;369:301–304.

    Article  CAS  Google Scholar 

  10. Horne WS, Ashkenasy N, Ghadiri MR. Modulating charge transfer through cyclic D,L-alpha-peptide self-assembly. Chemistry 2005;11:1137–1144.

    Article  CAS  Google Scholar 

  11. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptideamphiphile nanofibers. Science 2001;294:1684–1688.

    Article  CAS  Google Scholar 

  12. Djalali R, Chen YF, Matsui H. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J Am Chem Soc 2003;125:5873–5879.

    Article  CAS  Google Scholar 

  13. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–1355.

    Article  CAS  Google Scholar 

  14. Djalali R, Samson J, Matsui H. Doughnut-shaped peptide nano-assemblies and their applications as nanoreactors. J Am Chem Soc 2004;126:7929–7935.

    Article  CAS  Google Scholar 

  15. Guler MO, Soukasene S, Hulvat JF, Stupp SI. Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Lett 2005;5:249–252.

    Article  CAS  Google Scholar 

  16. Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 2002;99:5355–5360.

    Article  CAS  Google Scholar 

  17. Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a selfcomplementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993;90:3334–3338.

    Article  CAS  Google Scholar 

  18. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003;300:625–627.

    Article  CAS  Google Scholar 

  19. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG. Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 2003;125:6391–6393.

    Article  CAS  Google Scholar 

  20. Song Y, Challa SR, Medforth CJ, et al. Synthesis of peptide-nanotube platinumnanoparticle composites. Chem Commun 2004;9:1044–1045.

    Article  CAS  Google Scholar 

  21. Dobson CM. Protein folding and misfolding. Nature 2003;426:884–890.

    Article  CAS  Google Scholar 

  22. Rochet JC, Lansbury PT Jr. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000;10:60–68.

    Article  CAS  Google Scholar 

  23. Gazit E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 2002;16:77–83.

    Article  CAS  Google Scholar 

  24. Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci. 2004;13:1939–1941.

    Article  CAS  Google Scholar 

  25. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 2005;102:315–320.

    Article  CAS  Google Scholar 

  26. Yemini M, Reches M, Rishpon J, Gazit E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 2005;5:183–186.

    Article  CAS  Google Scholar 

  27. Reches M, Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 2004;4:581–585.

    Article  CAS  Google Scholar 

  28. Narmoneva DA, Oni O, Sieminski AL, Zhang S, Gertler JP, Kamm RD, Lee RT. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 2005;26:4837–4846.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gazit, E. (2008). Self-Assembly of Short Peptides for Nanotechnological Applications. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_16

Download citation

Publish with us

Policies and ethics